
Distributing Multipartite Entanglement over Quantum Networks

Luís Pedro Morais Bugalho

Thesis to obtain the Master of Science Degree in

Engineering Physics

Supervisors: Prof. Yasser Rashid Revez Omar
Prof. João Carlos Carvalho de Sá Seixas

Examination Committee
Chairperson: Prof. Pedro Miguel Félix Brogueira

Supervisor: Prof. João Carlos Carvalho de Sá Seixas
Member of the Committee: Prof. Damian Markham

January 2021

ii

“Les eaux se gonflaient et redescendaient lentement. Cette respiration calme de la mer faisait nâıtre et

disparâıtre des reflets huileux à la surface des eaux. Devant eux, la nuit était sans limites.”

in La Peste by Albert Camus

iii

iv

Acknowledgments

Behind every thesis there is always a number of people that made it possible. I would like to thank my

supervisors Professor Yasser Omar and Professor João Seixas for their guidance throughout this thesis,

which I would call the first step into my future career, as well as the support from the EU H2020 Quantum

Flagship project QIA – Quantum Internet Alliance (820445).

I would also thank the Physics of Information and Quantum Technologies Group, from Instituto de

Telecomunicações for much appreciated feedback, specially to Dr. Bruno Coutinho who has provided

large amounts patience, time and expertise throughout all the period that culminated in my thesis.

Without our discussions and fruitful suggestions for literature, this thesis would not be possible. So it

goes, “discussion is an exchange of knowledge”.

In my personal circles, I would like to thank all of my close friends with whom many moments were

shared, in and out of IST. Specially considering the period in question, they were capable of providing

the necessary support and contribute not only for overall happiness, but also to realise myself as an

individual capable of perceiving what surrounds us all.

To my family, my deepest thanks for always being there. Thank you for allowing and pushing me to

find my path with nothing shorter than love, trust and pride.

v

vi

Resumo

A internet quântica irá possibilitar novas tecnologias quânticas distribúıdas em redes, particularmente

através de distribuição de entanglement entre duas partes a longas distâncias. No entanto, algumas das

suas posśıveis aplicações em áreas como comunicação, detecção de sinais e computação podem beneficiar

do entanglement multipartido ser partilhado entre vários nodos da rede. Neste projecto, abordamos o

problema de distribuir optimamente este tipo de entanglement em redes quânticas com rúıdo, onde cada

link é um par entangled. Para o fazer, descrevemos o rúıdo na rede com canais depolarizadores, verificando

o seu efeito na distribuição dos estados GHZ. Introduzimos também ferramentas da teoria clássica de

routing que são capazes de criar um framework para resolver o problema de otimalidade, permitindo a

inclusão de parâmetros adicionais. Apresentamos um algoritmo para distribuição ótima de um estado

GHZ de 3 qubits maximizando simultaneamente a fidelidade do estado final e a probabilidade de sucesso,

simulando-o para diferentes modelos de redes quânticas. Derivamos também aproximações na forma como

a complexidade dos nossos algoritmos aumentam, corroborando os tempos de execução polinomiais das

simulações. Além disso, determinamos as condições necessárias para manter esta optimalidade simultânea

para estados GHZ com um número maior de qubits e para outros tipos de entanglement multipartido.

Este trabalho abre caminho para gerar otimamente correlações quânticas multipartidas em redes quânticas

com rúıdo, um recurso importante para tecnologias quânticas distribúıdas.

Palavras-Chave: Redes Quânticas, Routing, Entanglement Multiparte, Distribuição de En-

tanglement, Estados Quânticos GHZ, Fidelidade

vii

viii

Abstract

The quantum internet will enable quantum networked technologies, namely by distributing bipartite

entanglement over large distances. However, some of its possible applications in areas such as commu-

nication, sensing and computation may benefit from multipartite entanglement being shared between

several nodes. In our work, we address the problem of distributing optimally this type of entanglement

over noisy quantum networks, where each link is an entangled pair. To do this, we describe the noise of the

network with depolarising channels, verifying its effect on the distribution of GHZ multipartite entangled

states. We also introduce tools from classical routing theory that are capable of creating a framework to

address the optimality problem, allowing the inclusion of additional parameters. An algorithm for opti-

mal distribution of a 3-qubit GHZ state maximising simultaneously the fidelity of the final state and the

probability of success is presented and simulated in different models of quantum networks. We also derive

approximations on the complexity scaling of our algorithms that corroborate the polynomial runtimes

of the simulations. Furthermore, we determine the conditions yielding this simultaneous optimality for

GHZ states with a higher number of qubits, and for other types of multipartite entanglement. This work

paves the way to optimally generate multipartite quantum correlations over noisy quantum networks, an

important resource for distributed quantum technologies.

Keywords: Quantum Networks, Routing, Multipartite Entanglement, Entanglement Distribu-

tion, GHZ Quantum States, Fidelity

ix

x

Contents

Acknowledgments . v

Resumo . vii

Abstract . ix

List of Tables . xv

List of Figures . xvii

List of Abbreviations . xix

1 Introduction 1

1.1 Quantum Networks . 1

1.1.1 Entanglement . 1

1.2 State of the Art . 2

1.3 Objectives . 3

1.4 Thesis Structure . 4

2 Background 5

2.1 Quantum Background . 5

2.1.1 Qubits . 5

2.1.2 Operations on Qubits . 5

2.1.3 Density Matrix . 7

2.1.4 Entanglement . 8

2.1.5 Quantum Operations . 11

2.1.6 Distributing Entanglement . 13

2.2 Networks and Graphs . 16

2.2.1 Erdös-Rényi Networks . 16

2.2.2 Square Cyclical Lattice Networks . 17

2.3 Routing Background . 17

2.3.1 Routing Algebra . 17

2.3.2 Algebras for Multi-Objective Routing . 19

2.3.3 Algorithms for Multi-Objective Routing . 21

2.4 End-of-Chapter Remarks . 23

xi

3 Distribution Metrics for Quantum Networks 25

3.1 Distributing Bipartite Entanglement . 26

3.1.1 Communication Time . 26

3.1.2 Memory Times . 27

3.1.3 Probability of Success . 27

3.1.4 Metric for Fidelity from Entanglement Swapping 28

3.1.5 Metric for Quantum Memories Decoherence . 28

3.1.6 Metric for Probability of Success . 30

3.1.7 Overall Metrics for Bipartite Entanglement . 31

3.2 Distributing GHZ States . 33

3.2.1 Scheme for distribution . 33

3.2.2 Mixed States and Fidelity . 36

3.3 Distributing Arbitrary States . 36

3.3.1 Arbitrary n-Qubit State . 36

3.3.2 Scheme for Distribution . 37

3.3.3 Mixed States and Fidelity . 38

3.3.4 Probability of Success Metric for Distributing Arbitrary States 40

3.4 End-of-Chapter Remarks . 40

4 Algorithms for Optimal Distribution of Multipartite Entanglement 41

4.1 Algebra for Trees . 41

4.2 Steiner Tree Algorithm . 43

4.3 Star Algorithm . 45

4.4 Algorithms Comparison . 47

4.5 Simulations . 48

4.5.1 Scaling of the Network . 48

4.5.2 Simulations Results . 51

4.6 Complexity of Star-Algorithm . 58

4.7 End-of-Chapter Remarks . 59

5 Concluding remarks 61

Bibliography 63

A Calculations of Fidelity 69

A.1 Distributing GHZ states using Star-Expansion Protocol 70

A.2 Distributing GHZ states using Scheme for Distributing Arbitrary States 74

B Monotonicity and Isotonicity Proofs 77

B.1 Fidelity from Entanglement Swapping Metric . 77

B.2 Waiting time Metric . 78

xii

B.3 Memory Decoherence Time Metric . 78

B.4 Probability of Success Metric . 79

B.5 Fidelity Metric for Distributing Arbitrary States . 79

C Complexity Calculations 83

C.1 Erdös-Rényi . 85

C.2 Square Cyclical Lattice . 86

C.2.1 Number of Optimal Paths for SCL Network . 88

xiii

xiv

List of Tables

A.1 Examples of possible merges considering that the merge always happens at the last qubit of

the first state am. The correct way to read this table is the following: each line corresponds

to the diagonal entry of the density matrix of the state after the merge and every time a

0 appears it corresponds to the term 1+2FI
3 and if a 1 appear, the corresponding term is

2(1−Fi)
3 . In the end, in each line the terms multiply and gives the correspondent value for

each matrix entry. 72

xv

xvi

List of Figures

1.1 Overview of our work and the involved concepts. 4

2.1 Representation of a qubit in the Bloch Sphere [34]. 6

2.2 From [18] (a) Representation of the protocol the quantum repeater has to implement. (b)

Representation of the protocol for entanglement purification. (c) Representation of the

protocol for entanglement swapping. 14

3.1 Picture description of how the different processes are considered. 31

3.2 Example of network with parameters correspondent to the fidelity and probability of success 32

3.3 Example of a shortest tree (highlighted in orange) connecting a set of 4 terminals in a

network. This corresponds to the optimal solution for distributing a 4-GHZ, minimizing

the number of entangled pairs used. 33

3.4 Merging steps of a n-GHZ state with a m-GHZ state. Each dot is a qubit, each line

represents a relation between the two qubits connected. Since they are graph states, each

qubit is in fact in the |+〉 state and each line represents a CZ gate between both qubits

(recall Section 2.1.4, namely the graph states subsection). The qubits that are filled

represent the ones affected by the depolarising channel. 34

3.5 Usual steps of distribution scheme presented in [25] for a distribution of a 4-GHZ state,

consisting of successive applications of the star expansion protocol over the Steiner nodes. 35

3.6 Steps for distribution considering successive star-graph merges introduced in this section

as a simpler way of calculating the effects on the final fidelity. 35

3.7 Example of a shortest star (highlighted in orange) connecting a set of 4 terminals in a

network. This corresponds to the optimal solution for distributing a 4 qubit arbitrary

state, minimizing the number of entangled pairs used. 37

4.1 Decomposition of a tree in several branches. 44

4.2 Probability of k independent realisations of Γ (i.e a path with k edges) having a γ value

bigger than γtrunc = γnmin . 50

4.3 Simulations for the scaling in an ER network with (a) 1000 nodes and (b) 5000 nodes and

in a SCL network with (c) 100 nodes and (d) 2500 nodes. 50

xvii

4.4 In the above figures, the left image is always correspondent to do with the complexity of

the algorithm (how much time in CPU clocks it takes to run the algorithm) and the right

image has to do with the hpaths quantity (how many optimal paths per node exist after

the algorithm finishes, as it will be better described in Section 4.6). 52

4.5 Simulations for the MOSP algorithm in an ER network: comparison for different average

degrees λ. From the complexity points, we can infer a possible linear dependency on the

average degree. 53

4.6 In the above figures, the left image is always correspondent to the complexity of the

algorithm (how much time in CPU clocks it takes to run the algorithm) and the right

image has to do with the number of optimal stars found by the algorithm. 54

4.7 Simulations for the Star-algorithm for a 3-Tree in an ER network: comparison in the

average degree λ . 55

4.8 Simulations for the Star-algorithm varying the number of terminals. Notice that for SCL

networks, when T=5 the complexity is inferior. This is explained by the fact that the

simulations where solutions were found are mainly constituted by sets of terminals that

are ”closer”, since when adding one more terminal resulted in sets of empty solutions which

data was not considered for these simulations. 55

4.9 In the above figures, the left image is always correspondent to the complexity of the

algorithm (how much time in CPU clocks it takes to run the algorithm) and the right

image has to do with the number of optimal trees found by the algorithm. 56

4.10 Comparison between 2 and 4 objectives MOSP algorithm. Notice that the scaling remains

identical in form for ER networks while for SCL networks the number of optimal paths

grows quadratically which results in complexity scaling with a polinomial of degree 5,

instead of 3. 57

A.1 Matrix entries plot for the the GHZ states with two (equivalent to a |φ+〉 pair) and three

qubits with and without depolarising channels to illustrate the form of a completely depo-

larised GHZ state. 75

C.1 Probability k independent realisations of Γ has a γ value bigger than n independent reali-

sations of Γ in the limit where γmin → 1 . 84

C.2 SCL network representation with quadrants and number of structural shortest-paths for

each node. 87

C.3 Some of the possible choices of finding a the set of non-dominated paths from two different

lists of paths with the same distributions. 89

xviii

List of Abbreviations

QIA Quantum Internet Alliance

LU Local unitary

LOCC Local operations assisted with classical communication

SLOCC Stochastic local operations assisted with classical communication

GHZ Greenberger–Horne–Zeilinger

ER Erdös-Rényi

SCL Square cyclical lattice

PO Pareto optimal

MOSP Multi-objective shortest-path

xix

xx

Chapter 1

Introduction

1.1 Quantum Networks

The study of quantum networks is becoming increasingly important to develop a Quantum Internet,

taking advantage of radically different quantum-based technologies. The Quantum Internet Alliance

- QIA, an international effort joining forces from different researchers around the globe and in which

this project is inserted, envisions the development of a Quantum Internet. While the classical internet is

capable of connecting two points (or more) on earth through classical communications, a quantum internet

would be able to do the same taking advantage of quantum communications which are fundamentally

different from their classical counterparts. Together with quantum processing of information, it would

alter the current paradigm of security and create a platform for a whole new set of applications.

Quantum communication relies on encoding the information in qubits which are the fundamental unit

of quantum information, analogously as bits are the classical unit of information. Using these qubits,

applications can be developed, for example protocols for ensuring secure and private communications and

access to quantum computers [1–3] and quantum metrology networks [4, 5].

Because of the nature of the physical processes and technologies that are the ground base for quan-

tum communications, a quantum network will be inherently distinct when it comes to describing the

parameters that affect the communications, e.g fidelities of shared quantum states, decoherence times

of quantum memories and probabilistic behaviour of quantum communication. All this requires finding

an approach to quantum networks that is compatible with their description and current state of the art

of the concealed quantum technologies. Moreover, the current stratification of the model of the quan-

tum internet [6, 7] involves various stages of functionalities according to the current developments in the

underlying engineering of devices capable of quantum communication and processing of information.

1.1.1 Entanglement

A significant concept for a number of quantum protocols is entanglement. It is a form correlation,

intrinsic of quantum mechanics and without a classical analog. We say that two particles are entangled

if they share this correlation, as we will describe with greater detail in the next chapter. In this thesis,

1

we are particularly interested in multipartite entanglement. While entanglement is usually used for two

particles, when we perform the crossover to three or more particles, the term multipartite entanglement

is convenient. Throughout this thesis we use the term entanglement for both cases, since what matters

is that this correlation is present in the desired states. With this type of correlation on more than just

two particles, protocols between more than two parties materialise, taking advantage of the possible

multipartite quantum states utilised.

1.2 State of the Art

The upcoming Quantum internet development relies on connecting two points through a quantum link,

relying on bipartite entanglement which has been in particular focus lately. All in all, multipartite

entanglement, which is able to connect more than two points in a quantum internet, comes as the natural

extension when regarding the types of states that we might consider. Moreover, some applications like

quantum sensor networks [8–11], some quantum communication protocols [12–14] and different forms of

performing distributed quantum computation [15, 16] all require the distribution of multipartite entangled

states across a quantum network. Finding the optimal way to distribute this multipartite states is

therefore necessary for the applications built on top of it, specially considering that some parameters of

the final state can render the state useless, e.g the fidelity of a quantum state usually has a threshold that

guarantees the presence of entanglement in the state [17]. Furthermore, understanding how the noise of

the network, present in each individual quantum link, affects the final state is key to finding the optimal

way to distribute such state.

For the bipartite case, the protocols for extending the range of entanglement are well established [18],

and so is the characterisation of the parameters that affect the final quality of the entangled pair and

its distribution. The problem of routing when it comes to bipartite entanglement is regarded in [19–23],

mostly by maximising the probability and rate of success using varying schemes, including on-demand

generation of entanglement and also considering continuous models, with continuous entanglement gen-

eration in the background.

In [18], a number of protocols for different stages of technology of the quantum repeaters - the

fundamental device to realise a quantum internet, as they are the devices that are capable of extending the

range of the entanglement through specific protocols - are demonstrated, as well as their base technology.

Protocols for distributing entanglement between two quantum repeaters are examplified: the DCLZ

entanglement distribution scheme in which entanglement is produced between an atomic ensemble and a

photon via laser pulses inducing potential Raman transitions of the atomic ensemble. The protocols for

extending the range of entanglement and purification of the entangled state are also described, together

with the implications on the quality of the final state.

While in [18] only the necessary protocols are described, in [19] and [20] the optimal routing problem

is the main goal, as to find the best way to distribute, using these protocols, entanglement between two

end-nodes in a quantum network. To do this, the concept of routing metrics are introduced (which in this

project we will introduce as a product of a more abstract description using algebraic theory in the context

2

of the routing problem, already studied in classical routing [24]) and the rate for generating entanglement

is maximised between two end-nodes, taking into account communication times, decoherence times as the

maximum time before the link is no longer suitable and probability of success of the different stochastic

processes involved in distributing end-to-end entanglement.

When considering the case of multipartite entanglement distribution, some schemes for distribution

have already been studied [25–27]. Despite this, the question of figuring what is the optimal way of

distributing the desired states across a quantum network, given a distribution scheme, is still in its early

stages with most work performing some simplifications. This is why a methodology capable of considering

different parameters is important and allows for a more systematic approach of the problem.

In [25] a scheme of distribution of a special class of multipartite entangled states is introduced, as

well as boundaries for the number of operations needed, which main goal is to minimise. However,

only pure states are considered providing that the error propagation from bipartite entanglement in the

intermediate steps is not taken into account, or any other type of parameter like the rate or probability

of success. In other words, the routing problem is not a concern of this paper. In [26] different types

of distribution schemes are presented and compared with each other, taking into account purification

protocols for multipartite states, namely multipartite hashing which is detailed in [28–30].

In [31] and in [32] the waiting time and probability of success are analysed in chains while also hinting

about the extension to multipartite distribution. However, in both works, an homogeneous network is

considered and therefore the routing problem is absent.

All works previously mentioned focused on finding distribution schemes more than implementing them

on a quantum network and finding the best way to distribute given such scheme, which introduces one

of the main goals of this present work.

1.3 Objectives

The objectives of this work, as also detailed in the paper that result from this project [33], is to find the

optimal way, i.e the way that optimizes the important parameters that define entanglement distribution

(e.g fidelity, probability of success,...), to distribute multipartite entanglement in quantum networks, tack-

ling the current shortcomings posed by assuming homogeneous networks, pure states and deterministic

generation of entanglement.

Given the developments in the schemes for distributing multipartite entanglement, this should be

done by creating a systematic approach, i.e a framework, to distribute optimally multipartite states

across a network, taking into account a given scheme for distribution. We should be able to provide an

algorithm that takes into account heterogeneous networks and the possibility of mixed states arising from

errors in the network protocols, like entanglement generation and entanglement swapping. This is done

by introducing different parameters that affect the quality of the final entanglement, namely the fidelity

(a measure of quality of a quantum state), probability of success, communication times and quantum

memory decoherence factor.

3

Figure 1.1: Overview of our work and the involved concepts.

More than just including this parameters, to make the framework complete, the method should leave

space and considerations in case more parameters are needed or some constraints in the quantum network

exist. This is crucial for a developing quantum internet with changing underlying technologies.

1.4 Thesis Structure

This thesis is organised in the following way: in Chapter 2 we will spend sometime to go in detail through

the background necessary to give context for the rest of the work. We start with the quantum background

in Section 2.1 describing qubits, the possible operations we can do with qubits, the possible states a set

of qubits can share and the characteristics of some important classes of states, passing through a small

introduction about networks and graph theory in Section 2.2 and followed by the routing background in

Section 2.3 in which we introduce routing on networks with enough detail for the rest of the work. In

Chapter 3 we explain how to describe the parameters in a quantum network and adapt these parameters

to utilise the routing algorithms. In Chapter 4 we showcase the algorithms created to find the best way

of distributing multipartite states, analyse the scaling problem in a network, present the simulations on

a model of quantum network and finally derive expression for the complexity of our algorithms. Finally,

in Chapter 5 we present some concluding remarks and possible future work.

4

Chapter 2

Background

2.1 Quantum Background

2.1.1 Qubits

While classical information is coded in bits - two-level systems in which each level corresponds to either

a zero or a one - quantum information is encoded in quantum bits, or qubits. These quantum bits are

also two-level systems (if there were three levels it would be called a qutrit, four levels a qudit,...) but

the underlying physical system behaves in a quantum manner, subject to quantum mechanics laws, and

therefore can be in a state of superposition of the two possible levels. If we denote by ”0” and ”1” the

two possible states of the qubit, then the qubit state can be described by:

|ψ〉 = α |0〉+ β |1〉 (2.1)

where α and β are complex numbers that verify the state normalisation |α|2 + |β|2 = 1. The bra-ket

notation, or equivalently Dirac notation, was introduced in 1939 by Paul Dirac, as the name suggests,

and denotes a vector in an abstract vector space with a scalar product antilinear on the first argument.

This space, the Hilbert space, is where the possible states exist. Another way to visualize the state space,

by performing a change of coordinates (see Equation 2.2), is the Bloch sphere (see Figure 2.1), which is

a geometrical representation named after the physicist Felix Bloch.

|ψ〉 = cos

(
θ

2

)
|0〉+ eiφ · sin

(
θ

2

)
|1〉 (2.2)

2.1.2 Operations on Qubits

There are a number of operations available for qubits that we can separate in two distinct categories -

unitary and non-unitary. The ones we are most interested in are the unitary operations since they are

reversible. Any one-qubit unitary operation has a corresponding transformation on the Bloch sphere cor-

respondent to a rotation around some axis. The most common unitary one-qubit operations, equivalently

one-qubit quantum gates, are:

5

Figure 2.1: Representation of a qubit in the Bloch Sphere [34].

• Pauli gates - perform a π rotation around the corresponding axis

σ̂x =

 0 1

1 0

 , σ̂y =

 0 −i

i 0

 , σ̂z =

 1 0

0 −1

 (2.3)

For example:

σ̂x |0〉 =

 0 1

1 0

 1

0

 =

 0

1

 = |1〉 (2.4)

• Hadamard gate - creates a state of superposition

Ĥ =
1√
2

 1 1

1 −1

 (2.5)

For example:

Ĥ |0〉 =
1√
2

 1 1

1 −1

 1

0

 =
1√
2

 1

1

 =
|0〉+ |1〉√

2
= |+〉 (2.6)

• Phase shift gates - introduce a relative phase

R̂φ =
1√
2

 1 0

0 eiφ

 (2.7)

For example:

R̂π/2 |+〉 =

 1 0

0 i

 1√
2

 1

1

 =
1√
2

 1

i

 =
|0〉+ i |1〉√

2
= |y+〉 (2.8)

Moreover, there also exist two-qubit gates. A few important examples are:

6

• Controlled unitary gates - perform a unitary gate dependent on the state of the control qubit

ˆC(U) =


1 0 0 0

0 1 0 0

0 0 u11 u12

0 0 u21 u22

 (2.9)

• Swap gate - swap the two qubits states

ˆSWAP =


1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1

 (2.10)

The most used two-qubit gates are the CNOT gate, which is just a controlled-X rotation (≡ C(X)),

and the controlled-Z rotation (≡ C(Z)). It is know that with the Pauli gates and a two-qubit gate we

can perform any quantum gate on any set of qubits (see Solovay–Kitaev theorem in [34]).

2.1.3 Density Matrix

The density matrix formalism is used to describe a state of a system of one or as many particles as

necessary. Given an ensemble of possible pure states and associated probabilities {pi, |ψi〉}, the density

matrix can be written as Equation 2.11 and will play an important role in the description of protocols,

since the state of the system is fully described by this operator.

ρ̂ =
∑
i

pi |ψi〉 〈ψi| (2.11)

In order to fully describe a quantum system state, this operator must follow a few conditions, namely:

1. Trace Condition - the trace must be equal to one (sum of probabilities of finding the system in

different states must be unit)

2. Positivity Condition - the operator must be positive (all of the eigenvalues must be non-negative,

since they represent probabilities)

The evolution of the states in this formalism will be described by unitary matrix and given by Equation

2.12a. A generalised measurement will be described by positive operator valued measurement (POVM)

and the measurement probabilities and states after measurement will be given by Equation 2.12b and

2.12c respectively.

ρ̂′ = Uρ̂U+ p(m) = Tr
[
M+
mMmρ̂

]
p(m) =

Mmρ̂M
+
m

Tr
[
M+
mMmρ̂

] (2.12)

One important concept, that is ultimately one of the key points of this project, is the existence of

mixed states. By definition, a pure state is a state that can be represented by ρ̂ = |ψ〉 〈ψ| where |ψ〉

7

is the state of the system. When noise is introduced in a system or it is allowed to interact with the

surroundings, this initial pure state can decohere into a sum of different possible states, each with an

associated probability and Equation 2.11 is recovered. That new state is then called mixed state.

Fidelity Measure

Due to the existence of mixed states in our work, the definition of how close two quantum states are is

necessary. This measure of closeness is called fidelity and is an important parameter to consider when

trying to distribute entanglement, wether it is bipartite or multipartite. The formal definition [34] is,

given two density operators ρ̂ and σ̂:

F (ρ̂, σ̂) = tr
√
ρ̂1/2σ̂ρ̂1/2

=
√
| 〈ψρ|ψσ〉 |2

(2.13)

Throughout this project, we use another alternate equivalent parameter, which we denote by fidelity

as well, similar to what is found in [35]:

f(ρ̂, |ψ〉) = 〈ψ| ρ̂ |ψ〉 (2.14)

where |ψ〉 is the pure state pretended and ρ̂ is the density matrix correspondent to the real state. It is

easy to verify that F (ρ̂, |ψ〉 〈ψ|)2 = f(ρ̂, |ψ〉). It is also important to notice that this measure of closeness

is invariant up to LU, i.e:

f(Ôρ̂ Ô†, Ô |ψ〉) = 〈ψ| Ô†Ôρ̂ Ô†Ô |ψ〉

= 〈ψ| ρ̂ |ψ〉

= f(ρ̂, |ψ〉) , ∀ Ô ∈ LU

(2.15)

2.1.4 Entanglement

As explained in the introduction, entanglement is a special type of correlation, intrinsically quantum, that

allows for a number of protocols and is one of the main pillars of this project. Starting with a quantum

system composed by two qubits, and a basis for the first qubit state space {|0〉a , |1〉a} and for the second

qubit state space {|0〉b , |1〉b}, performing the tensorial product of the Hilbert spaces, we arrive at the

state space of the composite system {|0a0b〉 , |0a1b〉 , |1a0b〉 , |1a1b〉}. From this, two systems are said to

be entangled if they joint state is not separable in a tensorial product of some individual states of each

system. For two qubits, the most relevant basis of maximally entangled states is the Bell basis:∣∣Φ+
〉

=
|0a0b〉+ |1a1b〉√

2

∣∣Φ−〉 =
|0a0b〉 − |1a1b〉√

2∣∣Ψ+
〉

=
|0a1b〉+ |1a0b〉√

2

∣∣Ψ−〉 =
|0a1b〉 − |1a0b〉√

2

(2.16)

It is easy to verify that performing a measurement on one of the subsystems results in knowing

the quantum state of the other system without requiring a second measurement. This is the type of

correlation that both systems share by being entangled.

8

It is also worth noticing that any partial trace of one of the subsystems leaves the other in a state

denoted by maximally mixed state, correspondent to a multiple of the identity matrix. The partial trace

operation is physically correspondent to measuring one subsystem without gathering any information

about the measurement. Algebraically it consists of finding an orthonormal basis for the desired subsystem

and tracing the density matrix times the correspondent measurement:

ρ̂a = trbρ̂ab

= tr(ρ̂ab ·M)
(2.17)

where M =
∑
i 1a ⊗ |i〉b 〈i|b, for example, M = 1a ⊗ |0〉b 〈0|b + 1a ⊗ |1〉b 〈1|b.

Multipartite Entanglement

When the system is composed by more than two qubits - multipartite - the definition of entanglement

becomes more complex. While for two qubits there is one class of entanglement and for three qubits

there are two distinct classes [36], for more than three qubits it is still uncharted territory. The way to

define these classes is by equivalence relations, in this case, if two states can be related under stochastic

local operations assisted with classical communication (SLOCC). This is imposed by the fact that after

distributing the many qubits, only local operations assisted with classical communication (LOCC) can be

performed, particularly local unitary (LU) transformations, enlargement of Hilbert spaces and classical

communications. It has been proven [37] that LU is equivalent to LOCC. If this LOCC equivalence is

not deterministic, but stochastic instead, i.e there is a non-vanishing probability of conversion of the

states under LOCC, it becomes a stochastic equivalence SLOCC which is exactly the way the classes of

entanglement appear.

For two qubits, the Bell basis state |Φ+〉 belongs to the only class of entanglement for two qubits,

which means that every entangled state can be transformed to |Φ+〉 under SLOCC. When three qubits

are considered, two different classes emerge. For any tripartite entangled state, it can be shown [36] that

such state can be converted, by means of SLOCC, to either the Greenberger–Horne–Zeilinger (GHZ)

state:

|GHZ〉 =
|000〉+ |111〉√

2
(2.18)

Or the W state:

|W 〉 =
|001〉+ |010〉+ |100〉√

3
(2.19)

This existence of these two classes inequivalent under SLOCC means that if we have a state |ψ〉 related

under SLOCC with |GHZ〉 and a state |φ〉 related under SLOCC with |W 〉, then |ψ〉 and |φ〉 are not

related under SLOCC.

The GHZ state is considered the maximally entangled state for three qubits, but when tracing any of

the qubits the remaining system looses any form of entanglement. The W state however, after tracing

out any of the possible qubits, the remaining system retains the maximum possible amount of entangle-

ment. These properties make this states important for multi-party protocols like quantum information

9

splitting [38] and quantum multipartite key distribution [14], or more commonly denoted by conference

key agreement.

Moreover, a generalisation of these states can be constructed for more than just three qubits. The

generalisation for m-qubit GHZ states, also denoted by m-Cat in [37] in honour of Schrödinger’s cat, is

given by:

|GHZm〉 =
|0〉⊗m + |1〉⊗m√

2
(2.20)

On the other hand, the generalisation of the W state for m-qubits is given by:

|Wm〉 =
|m− 1, 1〉√

m

=
|0...01〉+ |0...10〉+ ...+ |10...00〉√

m

(2.21)

where |m− 1, 1〉 denotes the totally symmetric state including m -1 zeros and 1 ones.

Graph States

More than different classes of entanglement under the SLOCC relation, there is also an important category

of entangled multipartite states - graph states. Graph states have important known applications [39],

such as quantum error correcting codes [40] and one way quantum computer (a measurement based form

of performing quantum logic) [16]. It is important to notice that the GHZ state and its generalisation for

any number of qubits is LU equivalent to a graph state, namely the star graph (every vertice connected

only to one center vertice), which is also LU equivalent to a complete graph (every vertice connected to

every other vertice).

A graph state has an equivalent representation, as the name suggests, to a graph. With this equivalent

representation, a variety of tools from graph theory [41] become instantaneously available and are proven

to be very useful when trying to construct protocols for distributing entanglement over an arbitrary

network, that can be represented by a graph. A graph can be described by a collection of vertices, V ,

and a description of which vertices are connected by an edge, E. A graph is then a pair G = (V,E) of a

finite set V ⊂ N and a set E ⊂ [V]2, the elements of which are subsets of V with two elements each. A

graph state associated with a simple graph G = (V,E) is defined [25] as the following:

|G〉 =
∏

(a,b)∈E

CZa,b |+〉V ,where |+〉V :=
⊗
a∈V
|+〉a (2.22)

with |+〉a = 1√
2

(
|0〉+ |1〉

)
and CZa,b being a controlled-Z operation on qubits a and b.

Using these graph states, three elementary graph operations can be introduced as physical operations

on graph states. They are as follows:

1. Vertex Deletion - This operation removes one vertex and all the associated edges from the graph.

Physically, it is implemented by the Pauli measurement of the relevant qubit in the Z basis.

2. Local Complementation on a vertex - This graph operation inverts the subgraph induced

by the neighbourhood Na of the concerned vertex a (see Figure 2 of [25]). It is implemented

10

by applying the relevant operation to the qubits of a ∪ Na , described by the quantum operator

Uτa := e−
i
4 ·X̂a

⊗
b∈Na e

− i
4 ·Ẑb acting on |G〉.

3. Edge addition (deletion) - By applying a controlled-Z operation between two qubits belonging

to the same node, an edge between two nonadjacent (adjacent) vertices is created (deleted).

2.1.5 Quantum Operations

A quantum operation is a formalism used to describe the evolution of quantum systems in various

situations. Any quantum gate has a description within this formalism, and so does any stochastic or

deterministic interaction of the quantum system with its surroundings, which is crucial for developing

methods of analysing the impact of decoherence while trying to distribute entanglement across a quantum

network.

A quantum operation is described in terms of the density matrix. It is a map E(·) that acts on a

density matrix and transforms it into another one:

ρ′ = E(ρ) (2.23)

The most common representation used for quantum operations is called operator-sum representation

and consists of finding a set of operators that describe the interaction or process the system evolves

through:

E(ρ) =
∑
k

ÊkρÊ
†
k (2.24)

Using this description, it is easy to verify that any quantum gate Û is a quantum operation with

{Êk} = {Û} and so is any measurement described by a set {M̂k}. Furthermore, while not all quantum

operations are trace preserving, the ones most important to us will be trace preserving (some authors

call this special set of quantum operations quantum channels). This characteristic implies a restraint on

the set of operators that describe the quantum operation, namely:∑
k

ÊkÊ
†
k = 1 (2.25)

Equivalence of Quantum Operations

One important feature of this description of quantum operations is that some quantum operations are

equivalent, i.e they produce the same outcome on any state subject to it. As we see in Theorem 6.30 of

[42]:

Theorem 2.1.1. (Theorem for Krauss representations) Let (An)n∈N and (Bm)m∈M be families

of bounded operators on H such that:

∑
n∈N

A†nAn =
∑
m∈M

B†mBm = I

11

Consider the quantum channels:

ρ 7→ L1(ρ) =
∑
n∈N

AnρA
†
n

ρ 7→ L2(ρ) =
∑
m∈M

BmρB
†
m

If there exists a complex unitary matrix (eventually of infinite size) (unm)n,m∈N (Assume that they are

indexed by the same set N by adding eventually 0’s to the smallest list) such that:

An =
∑
m∈N

unmBm

for all n, then L1 and L2 define the same quantum channel.

This theorem defines the necessary relation between sets of operators that translate in equivalent

quantum operations.

Depolarisation Channel

The depolarisation channel is a quantum channel that is capable of modelling noise or decoherence in

bipartite entanglement, due to an equivalence present, which we will further detail. Considering a system

of only one qubit, the action of the depolarising channel is given by:

D(ρ, p) = pρ+
1− p

3
· (X̂ρX̂ + Ŷ ρŶ + ẐρẐ) (2.26)

However, we require a definition of the depolarising channel capable of acting on specific qubits of a

larger system of qubits. Such depolarising channel is a map acting on a set of qubits N, performing the

action of 2.26 on qubit i:

D(ρ, p, i) ≡ Di(ρ, p) = pρ+
1− p

3
· (X̂iρX̂i + ŶiρŶi + ẐiρẐi) (2.27)

where for each Pauli gate σ̂i ≡ σ̂i ⊗ 1⊗N\i and N \ i is the set of all qubits except qubit i.

The meaning of this transformation, as the name suggests, is a depolarisation of the qubit state from

the original state applying a small amount (controlled by p) of error in each possible direction (X,Y and

Z), which do not actually work as directions, as much as of types of possible errors (X constitutes a

bit-flip error, Z a phase-flip error and Y both a phase-flip and bit-flip error). Considering we have a Bell

State of the form |φ+〉 = (|00〉+ |11〉)/
√

2, applying this transformation on either one of the qubits will

result in a Werner State, as demonstrated by the following equation:

D2(|φ+〉 〈φ+| , F) = F |φ+〉 〈φ+|+ 1− F
3
· (X̂2 |φ+〉 〈φ+| X̂2 + Ŷ2 |φ+〉 〈φ+| Ŷ2 + Ẑ2 |φ+〉 〈φ+| Ẑ2) (2.28)

= F |φ+〉 〈φ+|+ 1− F
3
· (|ψ+〉 〈ψ+|+ |ψ−〉 〈ψ−|+ |φ−〉 〈φ−|) (2.29)

12

using for every Pauli gate σ̂2 ≡ 11 ⊗ σ̂2 again, for simplicity.

Another alternative representation of the action of the depolarising channel of density matrices exists.

Consider we have some state |φ〉 represented by the matrix ρ ∈ Dn = {A ∈Mat2n(C) : A = A†, T r(A) =

1}. The action of a depolarisation channel on particle i of such element is also given by the following

expression:

Di : Dn × [0, 1] −→ Dn

(ρi ⊗ ρN\i, F) = (ρ, F) 7−→ 1 + 2F

3
ρ+

2(1− F)

3
(Ŷ ρiŶ)T ⊗ ρN\i

Given that the action on the last element of the previous expression is linear, we can further simplify

and arrive at the following result:

Di(ρ, F) =
1 + 2F

3
ρ+

2(1− F)

3
Λi(ŶiρŶi) (2.30)

where Λi denotes the partial transposition with respect to particle i and Ŷi is, just as before, 11 ⊗ 12 ⊗

...⊗ Ŷi ⊗ ...⊗ 1n. Using this form it is easier to understand some of the properties of this map, namely:

1. Di(αρ1 + βρ2, F) = αDi(ρ1, F) + βDi(ρ2, F) (Linearity on the first argument)

2. Di(Dj(ρ, Fj), Fi) = Dj(Di(ρ, Fi), Fj) (Commutativity on the indice of the qubit)

3. Di(ρ1 ⊗ ρ2, Fi) = Di(ρ1, Fi)⊗ ρ2 with i ∈ N1
1

4. UiDj(ρ, F)U†i = Dj(UiρU
†
i , F) for any Ui unitary single qubit operation acting on any qubit i

5. CZi,jDk(ρ, F)CZ†i,j = Dk(CZi,jρCZ
†
i,j , F) for any set of indices i, j 6= k ∈ {1, 2, ..., n} 2

6. Li(Dj(ρ, F)) = Dj(Li(ρ), F) for any quantum channel Li(·) acting on qubit i 6= j

2.1.6 Distributing Entanglement

Entanglement is the basis for many quantum communication protocols, as we have discussed earlier,

making its distribution a pivotal study in quantum networks. The main goal of a quantum network is to

enable communication between two or more terminals that can be far apart from each other. However,

due to losses in the channels of communications (air, optical fiber,...) and given that a qubit ca not be

copied or amplified due to quantum mechanics laws, a solution for guaranteeing communication between

any points must be created - a quantum repeater. A quantum repeater is a physical device capable of

executing a set of protocols to enlarge the range of the entanglement [18]. Its physical implementation

depends on the stage of functionality of the quantum network [6], a way of characterising the different

stages in the development of a full-fledged quantum internet, ranging from quantum trusted repeaters to

quantum repeaters with memories.

1N1 is the set of qubits described by ρ1
2CZi,j is the controlled-Z gate with control on qubit i and target on qubit j (or vice-versa since it is symmetric on the

indices i.e CZi,j = CZj,i)

13

(a)

(b)

(c)

Figure 2.2: From [18] (a) Representation of the protocol the quantum repeater has to imple-
ment. (b) Representation of the protocol for entanglement purification. (c) Representation
of the protocol for entanglement swapping.

There are three primary protocols required to create the long-range entanglement that can be used

for quantum communication tasks, namely entanglement generation, entanglement purification and en-

tanglement swapping. The representation of the type of protocol that a quantum repeater must be able

to do can be found in Figure 2.2a.

Entanglement generation

Entanglement generation is the process for creating entangled links between network nodes. At this

step, entanglement is only created between adjacent nodes. Using some physical system that can encode

quantum information, for instance, using single atoms (or artificial atoms) within cavities or ensembles

of atoms in a vapor. To transmit the information, photons are a good tool for the job. After interacting

with the qubit holding the information, they can carry an entangled state (between them and the qubit),

which after reaching another node of the network, is able to create entanglement between the two qubits

in each node, creating a way of distributing entanglement between adjacent nodes.

One example of protocol for entanglement generation is the one introduced in [18], called DCLZ

scheme, named after Duan, Lukin, Cirac and Zoller [43], consisting of using atomic ensembles and different

levels of excitation as qubits and photons that excite the atomic ensembles to distribute entanglement

with another atomic ensemble.

Entanglement Purification

One of the biggest setbacks with quantum technologies nowadays is that quantum states suffer from

decoherence, this is, quantum states quickly transform themselves into other states, therefore loosing the

information they had. In order to counteract this problem, entanglement purification protocols have been

designed. The aim of the process is to create a higher quality entangled state from a number of lower

14

quality ones. Consider the Bell state |φ+〉 〈φ+|, if a dephasing error or other types of errors associated

with imperfect local operation occurs, the altered state can be expressed as in Equation 2.31, which is

called a Werner state [37].

ρ̂w = F |φ+〉 〈φ+|+ 1− F
3

(
|φ−〉 〈φ−|+ |ψ+〉 〈ψ+|+ |ψ−〉 〈ψ−|

)
=

1− F
3

14 +
4F − 1

3
|φ+〉 〈φ+|

(2.31)

with |φ±〉 = 1/
√

2(|00〉±|11〉) and |ψ±〉 = 1/
√

2(|01〉±|10〉) corresponding to the Bell basis. Considering

this Werner state is shared between qubits 1&2 and 3&4, the recurrence method protocol for entanglement

purification, represented in Figure 2.2b, requires application of CNOT gates between qubits (1&3) and

(2&4) followed by a measurement on qubits (3&4) in the computational basis, taking only the outcomes

when both qubits are in the same state. The resulting state will also be a Werner state with a new higher

fidelity given by Equation 2.32. The case considering different pair fidelities can also be seen in [18].

Fp =
F 2 + 1/9 · (1− F)2

F 2 + 2/3 · F (1− F) + 5/9 · (1− F)2
(2.32)

Entanglement Swapping

Entanglement swapping is the protocol that enlarges the range of the entanglement by performing a set

of operations at the quantum repeater node that translate in sharing an entangled state between the

terminal nodes.

Assuming that there is an entangled link between qubits 1&2 and 3&4 as in Figure 2.2c, performing

a CNOT operation between qubits 2&3 and then measuring them in the Bell basis will project the state

of qubits 1&4 in |φ+〉, up to a local unitary correction, {1, X̂, Ẑ, ẐX̂}, depending on the measurement

outcome. This operation decreases the fidelity of the final state shared between the terminals, which is

the main source for the problem of finding the best form in a quantum network to distribute bipartite

entanglement.

If the initial entangled pairs can be modelled as a Werner states with fidelities F1 and F2, which is in

fact equivalent to placing a depolarising channel over whichever qubit of each Bell State φ+ (see Equation

2.29), the final fidelity of the new Werner state shared between the terminals will be given by:

F ′ = F1F2 +
(1− F1)(1− F2)

3
(2.33)

By performing a change of variables that takes advantage of the multiple representations of the Werner

state in Equation 2.31, γ = 4F−1/3, the equations become:

ρ̂w =
1− γ

4
14 + γ |φ+〉 〈φ+| (2.34)

γ′ = γ1 · γ2 (2.35)

This simplifies the problem and provides a way of characterising how each link in a path of a quantum

network will affect the fidelity of the final state after performing the successive entanglement swaps across

each path. Moreover, this protocol will prove to be insightful when trying to find and characterise the

15

fidelity in a protocol that considers not only of bipartite entanglement, but also multipartite entanglement,

which is one of the goals throughout this project.

2.2 Networks and Graphs

Networks and graph theory are closely related since graphs are essentially what networks are. A graph

[41] is a mathematical object that can be described by a set of vertices and a set of edges connecting

those same vertices. It can be completely defined by an adjacency matrix A with each component ai,j

defining the weight of the edge connecting vertices i and j, which is an alternative formulation to the

one we already presented when considering graph states in Section 2.1.4. From this, it is obvious that

weights can not be negative. If they are zero, such edge does not exist and if the matrix is symmetrical,

then the graphs is undirected, i.e, the weight of going in one direction of an edge is the same as going on

the opposite direction.

A random network is a statistical ensemble, where each member—a particular configuration of vertices

and edges—is realised with some prescribed probability (statistical weights). One example of these types

of networks are Erdös-Rényi networks, with Poisson distribution for the number of neighbours each node

has. Complex networks can model an handful of current real-world networks, including the World Wide

Web, the Internet, basic cellular networks, and many others. In this work, we will closely follow the

descriptions of Erdös-Rényi networks and square cyclical lattices. We chose this two models, since they

are both well studied models and capture some of the properties of a possible quantum internet, namely

the small world property present in Erdös-Rényi networks and the added complexity for square cyclical

lattices.

It is also important to distinguish between structural and functional connectivity in a network. This

difference comes form the network construction and edge associated parameters, for once, if there is a

parameter threshold for some form of connection between two nodes, while there may exist an structural

path to it, i.e a set of edges connecting both nodes, this connection might not be functional in the sense

that such parameter falls below the threshold and the connection is not functionally possible. In this

chapter we only deal with structural connectivity in networks and leave the functional to the next chapter

where we introduce a set of tools to best describe these parameters and everything associated.

2.2.1 Erdös-Rényi Networks

The most important parameter that characterises an Erdös-Rényi (ER) is its degree distribution. The

degree is the number of edges connected to any particular vertex, which for ER networks follows a

poissonian distribution with average value λ:

P (degree = z) = Pois(λ; z) =
λze−λ

z!
(2.36)

From the definition of Poisson distribution, it is easy to verify that λ is in fact the average degree.

Besides the average degree, another important parameter for the network that can be derived from its

16

degree distribution, using some results and properties of generating functions [41, 44], is the maximum

path length of a graph, or diameter of the graph. For a ER network the diameter is:

dER =
lnN

lnλ
(2.37)

With N being the number of nodes in the graph.

2.2.2 Square Cyclical Lattice Networks

Another network which we consider is the square cyclical lattice (SCL), which is constituted by an 2D

array of nodes arranged in a square lattice, every node connected to the closest four nodes. The cyclical

means that at the edges of the lattice they connected with the opposite edge neighbours. Topologically, it

can be perceived as a torus. The degree distribution of this network is 4 for every node and the diameter

of this network is:

dSCL ∼
√
N (2.38)

Where N is the number of nodes of the network.

2.3 Routing Background

Routing is solving the problem of finding the best path in some network or graph composed by nodes

and edges with associated parameters. There have been numerous advances in routing throughout the

birth and development of the internet, that will show to be convenient when trying to solve the problem

of routing in a quantum network. For once, the fidelity has an associated cost-function, equivalently

metric, that distinguishes different paths, with higher fidelities reducing the amount of error created by

less than perfect entanglement and imposing a restriction on the minimum end-to-end fidelity, since for

fidelities inferior to 1/2 the amount of entanglement present vanishes. In addition, there will be other

metrics that will be proven relevant to describe the entanglement distribution associated with parameters

of each edge.

While most work on routing undertakes a more practical and pragmatic approach, there is also a

more fundamental theory of algebraic routing [24], which will be the starting point in this approach.

2.3.1 Routing Algebra

A network can be described as an undirected graph comprised of nodes {ui} with cardinality N and a set

of links between nodes {(ui, uj)} with cardinality E. A routing algebra is a special tool that allows for

standardisation of the way a routing problem is solved. While there are different ways of defining it, even

among the same author, they all end up being the same in less or more compact descriptions [24, 45, 46].

In this project, we use the definition present in [24], which allows for a better introduction into routing

algebras:

17

Definition 2.3.1. Algebra for Routing is an ordered septet (W,�, L,Σ, φ,⊕, f) comprised as follows:

W a set of weights, � a total order, L a set of labels, Σ a set of signatures, φ a special signature, ⊕ a

binary operation that maps pairs of labels and signatures into a signature and a function f that maps

signatures into weights.

From this definition, we can establish the parallelism with a quantum network. The set of labels is the

set of edges associated parameters, the set of signatures are the parameters of the paths in the quantum

network, the set of weights are the cost that this paths can have under the function f , which maps the

paths parameters into a cost (or weight), the total order defines an ordering on the costs, i.e if we want

to minimise then � = ≤, the special signature is the signature used to discard paths (equivalently the

no-possible-path signature) and the binary operation ⊕ is the way a path is extended with an edge to a

bigger path.

With this algebra, a set of important characteristics can be defined and will be fundamental when

finding the necessary properties for optimal convergence to the solution in the shortest-path algorithms.

The condition of monotonicity means that every time we extend the path, its weight will follow the

same trend, defined by the total order of the algebra. This condition for an algebra for routing guarantees

the convergence to a path under an appropriate algorithm, even though this convergence is not necessarily

to the optimal path.

Definition 2.3.2. (Monotonicity) an algebra for routing is called monotone if:

∀ l ∈ L,α ∈ Σ : f(α) � f(α⊕ l)

A strict monotonicity can also be considered with the relation ≺ defined such that a ≺ b if a � b and

a 6= b.

Definition 2.3.3. (Strict Monotonicity) an algebra for routing is called strictly monotone if:

∀ l ∈ L,α ∈ Σ : f(α) ≺ f(α⊕ l)

It is easy to verify that, by definition of neutral element of (Σ,⊕) which we will call eΣ, that for an

algebra to be strictly monotone, the set of labels must not contain eΣ. As for the isotonicity condition, it

states that if the optimal path is extended, it will continue being the optimal path. From this property,

together with the monotonicity, the algebra for routing will converge always to the optimal path [24]

under an appropriate algorithm. There are two cases of isotonicity, depending on the argument of the

binary operation considered, namely left and right-isotonicity [47]. An algebra is called isotonic is it is

both left and right-isotonic.

Definition 2.3.4. (Right-Isotonicity) an algebra for routing is called right-isotone if:

∀ l ∈ L,α, β ∈ Σ : f(α) � f(β)⇒ f(α⊕ l) � f(β ⊕ l)

18

Definition 2.3.5. (Left-Isotonicity) an algebra for routing is called left-isotone if:

∀ l ∈ L,α, β ∈ Σ : f(α) � f(β)⇒ f(l ⊕ α) � f(l ⊕ β)

2.3.2 Algebras for Multi-Objective Routing

Not always a shortest problem path can be described with only one parameter. While for more than one

parameter, from the abstract definition of routing algebra, such descriptions are made possible, usually

they do not verify the required conditions for optimal convergence of the shortest-path algorithms, usually

failing the isotonicity property, e.g the shortest-widest algebra [45]. One possible way to overcome this

problem is to separate the different parameters into different algebras, independently monotonic and

isotonic and use a multi-objective approach, introduced in 1984 by Martins [48], defining additional

relations and a new definition of optimal paths, required when dealing with multiple objectives for

routing.

Definition 2.3.6. Set of Algebras for k-Multi-Objective Routing is a set of ordered septets 3 {(W i,�i

, Li,Σi, φi, ⊕i, f i)} with i = 1, ..., k. Each member of each septet is comprised as follows: W i a set of

weights, �i a total order, Li a set of labels, Σi a set of signatures, φi a special signature, ⊕i a binary

operation that maps pairs of labels and signatures into a signature and a function f i that maps signatures

into weights.

In the case for k = 1, we return at the usual definition of algebra for routing considering only one

objective. The important relation to consider, introduced in [48], that glues all algebras and defines the

order between the different paths is now the dominance relation:

Definition 2.3.7. (Dominance) let ω and ν be two different signatures in {Σi}. ω dominates ν, ω D ν

if f j(ωj) �j f j(νj) ∀j ∈ {1, ..., k} and the strict order holds at least once.

This relation states that given two different paths in a set of algebras for routing, unless every

parameter of one path is better or equal than the corresponding parameter of the other (with the strictly

better ordering happening at least once), then neither path is better than the other, i.e neither path

dominates the other. From the definition of total order, which requires that ∀a, b either a � b or b � a,

it is clear to see that the dominance relation is not a total ordering, justifying why we can not attack the

problem only considering one algebra describing every parameter.

Proposition 2.3.1. For the set of algebras for multi-objective routing, if the individual algebras are

monotone and isotone, then the dominance relation is inherited, i.e, ω, ν are two distinct signatures such

that ω D ν, then:

∀ l ∈ L ≡ {Li} : (ω ⊕ l) D (ν ⊕ l)
3every set {χi} ≡ {χ1, ..., χk}

19

Proof. From the definition of dominance, we get that if ω D ν then f j(ωj) �j f j(νj) ∀j ∈ {1, ..., k}

(with the strict order happening once). From isotonicity we get that ∀ i,∀ ω, ν ∈W : f i(ωi) �i f i(νi)⇒

f i(ωi⊕ li) �i f i(νi⊕ li),∀ l ∈ L. For the case of the strict order, it is important to notice that isotonicity

implies that the order also maintains for the strict order4. Because of this isotonocity property, then we

get that (ω ⊕ l) D (ν ⊕ l), and therefore we say that the dominance relation is inherited.

Remark. For the set of algebras for multi-objective routing, if the individual algebras are isotone, let ω, ν

are two distinct signatures such that ω�D ν, then:

∀ l ∈ L ≡ {Li} : (ω ⊕ l) �D (ν ⊕ l)

Proof. Identical to Proposition 2.3.1.

This proposition is one of the most important and ultimately justifies the optimality of our algorithms.

By defining each algebra independently and requiring them to be individually isotonic, then we do not

need to worry about possible interferences of parameters. If there are these interferences, then the algebras

are not isotonic and we can find another formulation of the objectives that results in individual isotonic

algebras, usually by separating different parameters, i.e consider that we have two paths represented each

by a vector of two signatures:

α(t) = (α1(t), α2(t)) and β(t) = (β1(t), β2(t))

∃t1, t2 : α(t1) D β(t1), α(t2) �D β(t2)
(2.39)

This would imply that the underlying algebras are not isotonic for all t since we would be able to find a

t1 and a t2 for which the ordering of one of the algebras would switch.

Given the dominance relation, the optimal solution considering the k-criteria becomes a more complex

problem. To find the solution that minimises all of the criteria is not always possible. Nevertheless, there

exists a privileged set of paths that are non-dominated by other paths and which can be considered the

set of optimal paths for the problem. This set of paths is called the set of Pareto Optimal (PO) paths.

Another important definition is the definition of possible path, which is just a path such that every

parameter is not a special signature of the correspondent algebra.

Definition 2.3.8. (Pareto optimal paths) let X denote the set of signatures correspondent to the paths

connecting node i and node j. Now let the set Xd = {∀x ∈ X,∃y ∈ X : y D x}. Then the set Xp = X \Xd

is the set of non-dominated signatures connecting node i and node j.

Definition 2.3.9. (Possible Path) let ω be a signature in {W i}. We say that ω is a viable signature

(correspondent to a possible path) if ∀ i = 1, ..., k : ωi 6= φi.

Moreover, an optimal path is always necessarily a possible path. All these definitions and propositions

will reveal very useful when defining and proving the optimality of the algorithms.

4If for every two different signatures, that are not the special signature, the value of their weight is different. If this is
not true then the algebras must be strict-isotone.

20

2.3.3 Algorithms for Multi-Objective Routing

While work related with multi-objective routing can be traced back to simpler cases up to two different

objectives in the decade of 1970 by Vincke [49] and Hansen [50], the first general approach for any number

of objectives and systematic approach, as seen on the previous subsection, was made by Martins [48], also

introducing an algorithm capable of solving the shortest-path problem. This algorithm has ever since

been studied, optimised in [51] and relaxed for some specific cases of objectives [52]. The algorithm used

throughout this work is identical to the one in [51], slightly modified using a different data structure as

described in Algorithm 1.

Algorithm 1 Multi-Objective Routing

1: procedure Shortest-Path(source) . Finds the shortest path to every node from the source
2: Nodes := Set of nodes of the network, each with underlying list of paths Pathsu initialised as

empty;
3: A := Set of visited nodes of the network initialised as empty;
4: B := Set of nodes to visit ordered as a priority queue data structure, with priority defined by the

dominance relation;
5: Initialise source← {eΣi}; . {eΣi} are the neutral elements of (Σi,⊕i)
6: Add source to B;
7: while B 6= empty do
8: node← Top(B)
9: Remove node from B and add to A;

10: for v ∈ neighbours(node) do

11: Pathsadd ← possible paths from {Paths(i)
node ⊕ Edge(node, v)};

12: if Pathsv = empty then
13: Pathsv ← Pathsadd;
14: Add v to B;

15: if Pathsv 6= empty then
16: Pathsp ← non-dominated paths of Pathsadd ∪ Pathsv;
17: if Pathsp 6= Pathsv then
18: Pathsv ← Pathsp

19: if v ∈ A then
20: Add v to B and remove from A; . needs to be revisited

21: if v /∈ A then
22: Update v in B;

Since some modifications have been made from the initial algorithm, it is important to prove the

optimality, in the Pareto sense, of this algorithm under the monotonicity and isotonicity conditions.

The behaviour of this algorithm is the following: the source node is initialised with the neutral path

and then visited; every time a node is visited, it concatenates its paths with the edges connecting it to

each neighbour and writes those concatenated paths in its neighbours, as long as they do not dominate

any previously existent paths, and adds the nodes to the queue, which is sorted to optimise the number

of times a node is visited.

Theorem 2.3.1. Monotonicity and isotonicity of every algebra for k-Multi-Objective Routing are suffi-

cient conditions so the solutions found for each node of the network by Algorithm 1 (SA) constitute the

set of Pareto Optimal Solutions (POS) for the shortest-path problem.

Proof. Consider a graph G comprised by a set of V = {ui} vertices, or nodes, and a set of egdes

E = {(ui, uj)} connecting those vertices.

21

1. First, let us prove that there is no cycle in any shortest path. This is pretty straight forward as, for

a cycle to be present in a shortest path it would have to be dominated by the neutral elements of

(Σi,⊕i), which is the same as not moving from the vertice we are in. Representing an edge by its

associated label l(u, v) = {l1(u, v), l2(u, v), ..., lk(u, v)} ∈ L ≡ {Li}, considering that any cycle in a

graph can be described by a sequence of edges l(ui1 , ui2)⊕ l(ui2 , ui3)⊕ ...⊕ l(uik−1
, uik) = ωcycle ∈ Σ

and considering that ∀ (u, v) ∈ E(G) : l(u, v) 6= {eWi} (if not possible, we can always implement a

simple way to prevent the same edge being added twice to a path), then f i(ωi) = f i(li(ui1 , ui2)⊕i

li(ui2 , ui3) ⊕i ... ⊕i li(uik−1
, uik)) �i 5f i(eΣi ⊕i ... ⊕i eΣi) = f i(eΣi) ∀ i = 1, ..., k which is the

same as not moving from the vertice where we stand. The presence of no cycles will guarantee the

convergence to some solution by the algorithm, since every time the algorithm adds the same edge

twice (simple cycle) on one path, the dominance conditions imposed would prevent it from being a

solution.

2. Second, let us check if the algorithm solutions in any vertice are necessarily solutions for the

shortest-path problem (SA ⊆ POS). We do this proof by contradiction: consider a solution of the

algorithm, z, that does not belong to the set of POS, ∃ y ∈ SA : y D z. There are two options for

this:

(1) either paths were added from step 12 of the algorithm, from the monotonicity and isotonicity

of the algebras we realise that the previous vertice also contained at least one element that was not

part of the solution of the previous vertice (y D z =⇒ ∃ ỹ, z̃ ∈ W ; l ∈ L : ỹ ⊕ l = y, z̃ ⊕ l = z such

that ỹ D z̃)

(2) the paths were added over successive iterations from step 17 of the algorithm after the first

when the set was empty.

From the conditions to add the paths to the set of solutions in step 15, we realise that only dominant

solutions can be added, which implies that every time a wrong solution is added, it must be due

to (1) and not (2). Following recursively to the beginning of the algorithm where the source is

initialised to the neutral elements of the signatures, then, the first paths added to the neighbours of

the source would have to be non-dominant and not part of the POS. Since the algebra is monotone,

this is impossible, so the first solutions are indeed part of POS and so are the successive following

solutions.

3. Third, let us check if the set of solutions found by the algorithm are in fact the only possible

solutions (SA ⊇ POS). Consider there is a solution of POS, z, that is not in SA, ∀ y ∈ SA : z�D

y. This might have happened because:

(1) it was not added when the node solutions were empty

(2) it was not added before visiting the first time

(3) it was not added after visiting the first time

5the relation ≺ is defined by a ≺ b if a � b and a 6= b and � is defined by a � b if b ≺ a

22

The first case (1) is obviously impossible from the dominance inheritance presented in Theorem

2.3.1. The second case (2) is also impossible since if it was a non-dominated path, then step 15

would imply its addition to SA. The third case is more complicated since a node can be visited

a finite number of times (no cycles in any path). This number of times is in fact bounded by the

number of neighbours due to the priority queue being defined by the dominance relation. If we

have dominant paths coming from every neighbour of our vertex, the algorithm will ensure that

only the dominant ones will be included in SA, and, if z is in fact a solution, it would be in SA.

As previously, recursively going back to the source, then if z was indeed a member of POS, then it

would have to be in SA.

From these three conditions, we get the proof of the theorem, and, therefore, optimality of the

algorithm under individually monotone and isotone algebras.

2.4 End-of-Chapter Remarks

In this first chapter we went over a lot of the background we will use throughout the rest of this thesis.

The multipartite states introduced will be our main focus, specially the GHZ state, which will be the

subject of many of our derivations. The fidelity measure is a crucial component of this thesis, as it is one

of our main objectives to optimise. The abstract algebras introduced, together with the properties are

very important to keep in mind. They are how we mathematically describe the important parameters

which we want to optimise and, while their description might be too technical, they encapsulate the

behaviour of choosing different paths or equivalently using different entangled pairs.

23

24

Chapter 3

Distribution Metrics for Quantum

Networks

Like previously mentioned in Section 2.3, even though rather superficially, a metric is the cost-function

associated to a parameter or set of parameters that attributes a cost, a weight, to a path in a graph.

This will help define which path is better and allow for the resolution of the shortest-path problem.

In Section 2.3.1, we also introduced a more fundamental way [24] of describing the theory behind the

shortest-paths, the algebras for routing that hide the metric in themselves, namely through the binary

operation ⊕ and the function f that maps signatures into weights. Because of this, from now on, we will

refer to metric as the function that takes signatures (or paths) and labels (or edges) and maps them into

weights - f(α⊕ l). The monotonicity and isotonicity properties introduced in Definitions 2.3.2 and 2.3.5

continue to be well-defined and tractable when dealing with metrics.

One critical aspect when dealing with metrics for distributing multipartite (and bipartite) states is

the scheme, or protocol, of distribution. This is the sequence of steps that must be undertaken so that

the final state distributed among the terminals (the end-nodes) is the desired state, wether it is a GHZ

state, a W state or any other entangled state. Therefore, the metric is always closely related with the

scheme of distribution, and implicitly, with the state distributed.

In the bipartite case, the scheme of distribution is simply the concatenation of different links resulting

in a path between the end-nodes. This concatenation is made through entanglement swapping protocols,

which have well studied effect on the fidelity (see Equations 2.33 and 2.35), which form a monotone and

isotone metric on the fidelity, as we will see in the next section. In this chapter, we will first go over

metrics in the case of distributing bipartite entanglement and then consider two different distribution

schemes for multipartite entanglement and describe some metrics, keeping an high level of detail for the

fidelity metrics, which is one of the main goals of this project.

25

3.1 Distributing Bipartite Entanglement

Before jumping into distributing multipartite entanglement, since most schemes of distribution start from

constructing paths and merging those paths, it is important to first introduce the metrics for distributing

end-to-end bipartite entanglement. As previously described in Section 2.1.6, there are already protocols

for distributing bipartite entanglement across a chain of entangled pairs: entanglement generation and

entanglement swapping. The effect of these protocols on the fidelity of the state is known (see Equation

2.35). However, more than the fidelity of state, there are other crucial parameters for deciding the best

way to distribute a given quantum state:

1. Waiting time - the time it takes between starting the protocol and signalling its completion. Since

this is not always deterministic, this time must be considered part of a metric that takes also into

account the probability of success and becomes the waiting time for each try.

2. Quantum memories - it is known [6] that in some of the early stages of the quantum internet, the

capabilities of each node to preserve a given quantum state will depend on the quantum memories

used. This memories, while being useful for storing the qubits for longer periods of time, will

introduce an error that can be quantised and therefore minded across a network, given a distribution

scheme.

3. Probability of Success - since some of the steps in distributing entanglement are not necessarily

deterministic (entanglement generation, entanglement swapping,...), it is important to introduce

a metric for the probability of success in generating end-to-end entanglement. This metric will

depend on the nodes characteristics.

Some approaches have started to be studied recently in [31, 32, 53, 54]. While in [31, 32], the routing

problem vanishes from the problem construction, assuming an homogeneous network, it provides good

context and characterisation of the different processes involved in distributing bipartite entanglement. In

[53, 54], the routing problem is defined in an heterogeneous network, but the fidelity metric acts as only

a constraint with a minimum fidelity and not as a routing objective.

Using the characterisation of the probabilistic behaviour and the effect of memory times described in

[31] we are able to construct the metrics that caracterise the entanglement distribution and will be used

later when creating an algorithm that solves the routing problem. In this section and throughout the rest

of this project we refer to entanglement generation as creating entanglement between two neighbouring

nodes and end-to-end entanglement generation as creating entanglement between two end nodes across

a chain using the entanglement swapping protocol.

3.1.1 Communication Time

Since both generation of entanglement and entanglement swapping require an heralding signal to verify if

the processes were successful, then classical communication times are required to be taken into account.

These times depend mostly on two different things: distance and the speed of light in the medium. For

26

simplicity let us consider the velocity to be always c which is the speed of light, even though if the velocity

is different the approach is the same, since the parameter to consider is the time and not the distance.

Then, the communication time will be given by La:b/c where La:b is the distance between nodes a and b.

3.1.2 Memory Times

At different stages of the quantum internet, the underlying physical system will impact the routing prob-

lem, specially considering that decoherence is an important factor to take into account when distributing

entanglement between two nodes in a network. If the quality of the link (fidelity of the state) decreases

bellow a certain threshold, then the link might not be usable for some protocols, so it is important to

take into consideration the decoherence with time. This will depend on the quantum memories times

that can vary from each physical device used.

Consider each node has a memory time given by τa. This means that the fidelity of the state will

decrease as shown on Equation 3.1 by e∆t/τa after ∆t time that the qubit is held on the quantum memory

in node a [31].

γ′ = γ · e∆t/τa (3.1)

Moreover, if two qubits share a state and each of them is stored in a different physical device with

different memory times, then their joint fidelity is decreased by:

e∆t/τa · e∆t/τb = e∆t(1/τa+1/τb) = e∆t/τa:b

τa:b =
[1

τa
+

1

τb

]−1 (3.2)

3.1.3 Probability of Success

The probability of success will depend on two main protocols when distributing bipartite entanglement:

entanglement generation and entanglement swapping. Each of them can be modelled by a geometric

distribution as follows:

Entanglement Generation

This probabilistic behaviour will depend on parameters of each link, i.e, the connection between two

different quantum repeaters. Assuming w.l.o.g a baseline time t0, then each link probability for generating

entanglement can be described by a time distribution, i.e a geometric distribution with a parameter

depending on the link (where t comes in multiples of the elementary time t0):

P (T a:b = t) = pa:b(1− pa:b)
t−1 , t = {1, 2, 3, ...} (3.3)

where T a:b is the random variable representing the time of generating entanglement between nodes a

and b and pa:b is the probability of generating entanglement between a and b within t0. In cases where

the entanglement generation is near deterministic, this parameter can be discarded.

27

Entanglement Swapping

Since entanglement swapping is a probabilistic operation which happens at each node (or quantum

repeater), the parameters are going to be node properties, instead of link as before. Its behaviour is

similar to entanglement generation but instead of time, we have number of tries before the first success

- therefore a geometric distribution is the best option [31].

P (Ka = n) = ka(1− ka)n−1 , n = {1, 2, 3, ...} (3.4)

where Ka is the random variable representing the number of times before the swapping is successful

of node a and ka is the probability of the swapping being successful at the first time on node a.

3.1.4 Metric for Fidelity from Entanglement Swapping

As stated in Equation 2.33, the fidelity after the entanglement swapping protocol is given, in the γ change

of variables, by:

γ′ = γ1 · γ2 (3.5)

Because if the fidelity drops below the threshold of 1/2 (which in γs corresponds to 1/3), the entan-

glement present vanishes and the state is discarded, the correspondent algebra is γ :
(

[1/3; 1) ∪ {0},≥

, (1/3; 1), (0; 1), 0,⊕γ , g
)

where ⊕γ is the following binary operation:

⊕γ : (0, 1)× (1/3; 1) −→ (0; 1)

(γi:j , γj:k) 7−→ γi:j · γj:k
(3.6)

And g(·) is the following function:

g(γ) =

γ γ ≥ 1/3

0 γ < 1/3

(3.7)

In Chapter 4 this type of algebras with a truncation value gain a formal definition and some advantages

are presented. Nonetheless, this algebra is both monotone and isotone and the proofs are presented in

Section B.1.

3.1.5 Metric for Quantum Memories Decoherence

Starting from a chain of nodes capable of generating entanglement between the neighbours, there are two

possible ways of achieving end-to-end entanglement:

1. in a pyramid-like scheme (see [31]) where if any process in extending the range of entanglement

fails, only the previous steps of that link must be repeated from the beginning and the non-mutual

entangled pairs wait its completion.

28

2. in a two-step scheme where all the entangled pairs between nodes are generated and then all

the entanglement swapping (which are measurements in all intermediary nodes proceeded by an

heralding signal) happen at the same time. If any of the individual processes fails, the scheme starts

from the beginning.

It is easy to verify that the first scheme maximises the probability of generating end-to-end entan-

glement, but complicates the analytic description of the waiting time and probability while also not

providing a limit for the memory decoherence. The second scheme however has an easier description and

provides a fixed limit on the memory decoherence time since, if the process repeats, no qubit is stored in

memory, so the maximum memory time will be the heralding of the two signals (entanglement generation

and entanglement swapping). In [31], the first scheme is well studied under the homogeneous constraint

for 2n chains of entangled pairs. In our case we take advantage of the simpler description of the second

scheme.

Under the two-step scheme, the generation of entanglement must be communicated before doing

the entanglement swapping at each intermediary node. This means that, after t0 time, we need to

communicate throughout the whole chain the OK-signal to proceed. This will take:

t
(1)
wait =

n∑
i=1

Li
c

(3.8)

Since at this point, the entanglement is being held between each two neighbouring nodes in the chain,

then the contribution to the decoherence factor will be:

σ
(1)
d =

n−1∑
i=1

t
(1)
wait

τi:i+1
=

n−1∑
i=2

2t
(1)
wait

τi
+
t
(1)
wait

τ1
+
t
(1)
wait

τn
(3.9)

Afterwards, the heralding signal for the entanglement generation is received and the swapping starts.

In the end, an heralding signal for the swapping must also be sent and will take again, at most:

t
(2)
wait =

n∑
i=1

Li
c

= t
(1)
wait (3.10)

Which will translate in a decoherence factor of:

σ
(2)
d =

t
(2)
wait

τ1:n
=
t
(2)
wait

τ1
+
t
(2)
wait

τn
(3.11)

since if the swapping is successful, the link will be shared between the first and last node memories.

This will result in a combined communication time and decoherence factor given by:

twait = t
(1)
wait + t

(2)
wait = 2

n∑
i=1

Li
c

(3.12)

σd = σ
(1)
d + σ

(2)
d =

n∑
i=1

twait
τi

(3.13)

This will translate in the following algebras for the waiting time twait :
(

R+∪∞,≤,R+,R+,∞,⊕t, idR+

)
and the memory decoherence time and τ :

(
R+

0 ,≥,R+,R+, 0,⊕τ , idR+

)
, where the binary operations ⊕t

and ⊕σ are defined as follows:

29

⊕t : R+ × R+ −→ R+

(ti:j , Lj:k/c) 7−→ ti:j + Lj:k/c
(3.14)

⊕τ : R+ × R+ −→ R+

(τi:j , τj:k) 7−→
[1

τi:j
+

1

τj:k

]−1 (3.15)

Both metrics are monotone and isotone. The formal proof of this is presented in Section B.2 and B.3.

3.1.6 Metric for Probability of Success

Given the model presented in Section 3.1.3 and the scheme of distribution being the two-step scheme

presented in Section 3.1.5, it is important to analyse how the probabilities come out to play. Since

every time something fails, everything repeats from the beginning, then the final distribution of the

probability of success will also be a geometric distribution with the parameter of the distribution being

the multiplication of all parameters. This comes from the fact that having either simultaneous (Figure

3.1a) or sequential (Figure 3.1c) geometric processes result in a geometric process:

1. Consider m simultaneous geometric distributions with parameters a1, a2, ..., am (see Figure 3.1a).

The probability of at least one element of that list failing one time is given by:

P (failing one time) = (1− a1)a2...am + a1(1− a2)...am + a1a2...(1− am)+

+ (1− a1)(1− a2)...am + ...+ a1(1− a2)...(1− am) + ...

=

2m−1∑
j=1

m∏
k=1

ajkk (1− ak)jk

=

2m−1∑
j=0

m∏
k=1

ajkk (1− ak)jk −
m∏
k=1

ak

=

m∏
k=1

(ak + (1− ak))−
m∏
k=1

ak

= 1−
m∏
k=1

ak

(3.16)

where j = jmjm−1...j2j1 is the binary decomposition of j and jk = 0 if jk = 1 and jk = 1 if jk = 0.

2. Consider n sequential geometric distributions with parameters b1, b2, ..., bn (see Figure 3.1c). The

probability of one of them failing and having to re-do all the steps from the beginning is:

P (failing one time) = (1− b1) + b1(1− b2) + b1b2(1− b3) + ...+ b1b2...bn−1(1− bn)

= 1−
n∏
k=1

bk
(3.17)

Using theses results, the final probability distribution (see Figure 3.1b) will be:

30

(a) Simultaneous processes.

(b) Two-step scheme with a first round of entanglement generation and a second
round of entanglement swapping.

(c) Sequential pro-
cesses.

Figure 3.1: Picture description of how the different processes are considered.

P (end-to-end at t) = p̃ · k̃(1− p̃+ p̃(1− k̃))t−1 = p̃ · k̃(1− p̃ · k̃)t−1

P (end-to-end at t) ∼ Geom(p̃ · k̃)

P (end-to-end within t) = 1− (1− p̃ · k̃)t

(3.18)

with p̃ =
∏n
i=1 pi and k̃ =

∏m
i=1 ki where n is the number of links within a chain and m is the number

of intermediary nodes in the chain (in a regular chain, m = n− 1).

Using the results of Equation 3.18, we can fix t to be some value of time, and verify that the properties

of the correspondent algebra are maintained (this will be verified in Section B.4. The algebra for t = 1

is given by psuc :
(

[0; 1),≥, (0; 1)× (0; 1), [0; 1), 0,⊕p, id[0;1]

)
where ⊕p is the following binary operation:

⊕p : [0; 1)× (0; 1)2 −→ [0; 1)

(pi:j , (pj:k, kj)) 7−→ pi:j · pj:k · kj
(3.19)

3.1.7 Overall Metrics for Bipartite Entanglement

Given the previous sections, let us organize all the found metrics into one simpler vectorial description.

Consider all the previously defined algebras:

1. Fidelity (in γ values) - γ :
(

[1/3; 1) ∪ {0},≥, (1/3; 1), (0; 1), 0,⊕γ , g
)

2. Waiting time - twait :
(

R+ ∪∞,≤,R+,R+,∞,⊕t, idR+

)
3. Memory decoherence time - τ :

(
R+

0 ,≥,R+,R+, 0,⊕τ , idR+

)
4. Probability of success - psuc :

(
[0; 1),≥, (0; 1)× (0; 1), [0; 1), 0,⊕p, id[0;1]

)
Using this, our vector description of the set of algebras would become: (γ, twait, τ, psuc). Reminding

the dominance relation introduced in Definition 2.3.7, one path a corresponding to a vector (γ(a), t
(a)
wait, τ

(a), p
(a)
suc)

dominates a path b corresponding to a vector (γ(b), t
(b)
wait, τ

(b), p
(b)
suc) if and only if:

31

γ(a) ≥ γ(b)

t
(a)
wait ≤ t

(b)
wait

τ (a) ≥ τ (b)

p(a)
suc ≥ p(b)

suc

(3.20)

With the strict inequality happening at least for one of these inequalities. Since these algebras do

not depend on each other by construction, then each path vector has, in this case, four individually

independent weights that do not interfere. In Figure 3.2a we present an example of a quantum network

where each entangled pair (or network link) is parametrised by a value of fidelity and a probability of

entanglement generation success and each node has an associated value for the probability of successful

entanglement swapping. In Figure 3.2b we present the solution for the multi-objective shortest-path

problem taking fidelity and probability of success into account, described by the metrics introduced in

the previous sections. Finally, in Figure 3.2c, we present the solution for the multi-objective shortest-tree

problem, using the same objectives and metrics for the shortest-paths and the 3-GHZ metrics described

in the next sections.

(a) Example of a simple quantum network with correspondent parameters. The final path fidelity depends on the
independent entangled pairs fidelity and the probability of success depends on the probability of entanglement
generation success and of entanglement swapping success.

(b) Solutions for the optimal paths problem (c) Solution for the shortest tree connecting three termi-
nals, equivalent to the distribution of 3-GHZ state

Figure 3.2: Example of network with parameters correspondent to the fidelity and proba-
bility of success

32

3.2 Distributing GHZ States

When distributing GHZ states and graph states, which can be obtained from GHZ states through LOCC,

several protocols have been under recent focus in [25, 26, 55]. In this project, we considered the scheme of

distribution present in [25] as the starting base, even though it only considers, as the many counterparts,

pure states and deterministic generation of entanglement. We take advantage of the description of the

depolarising channel as a way to model the imperfect entanglement, equivalent to using Werner states

as we have seen before in Equation 2.29, and calculate the effect of the distribution scheme with the

depolarising channels on the fidelity of the final GHZ state distributed among the terminals.

3.2.1 Scheme for distribution

The protocol in [25] starts by first solving the Steiner Tree1 (see Figure 3.3) problem using the end-nodes

as the terminal nodes. After the Steiner tree connecting the end-nodes is found, the protocol follows a set

of sequential LOCC operations to create a star graph across the desired nodes - star expansion protocol

(see [25] for a more detailed description). This star graph is LU equivalent to a GHZ state, as seen in the

beginning. The problem then becomes finding the best-tree such that, after the star expansion, results

in the state that maximises or minimises the imposed metrics. In this section we start by deriving the

metric for the fidelity of the final state after the star expansion.

Figure 3.3: Example of a shortest tree (highlighted in orange) connecting a set of 4 terminals
in a network. This corresponds to the optimal solution for distributing a 4-GHZ, minimizing
the number of entangled pairs used.

The star expansion protocol consists of a set of steps that result in extending entanglement in a

star-like form. To perform the necessary calculations in a simpler manner, we adapted this protocol

to an identical one that can be understood as merging star-graph states (or GHZ states) across a tree.

Since every tree can be modified through LOCC to set of star-graph states (see Figure 3.6a) the protocol

1The Steiner tree is the shortest (under some metric) tree like graph connecting a set of nodes called the terminal nodes.
A tree graph is a special type of graph that contains no cycle. For example suppose that we start with one node which
has n links to n nodes and those n nodes have each some links to other nodes (never connecting to previous nodes, which
would be a cycle) and so on, the type of graph this generates is always a tree graph.

33

merges every GHZ state into another GHZ state connecting every node.

The merge of two GHZ states, not necessarily with the same number of qubits, starting from one

n-GHZ2 state and a m-GHZ state with qubits i and j in the same node (necessary to apply two-qubit

gates), goes as follows (see Figure 3.4):

1. Perform a controlled-Z operation between qubits i and j (Figure 3.4b);

2. Perform the local complementation operation on qubit j (Figure 3.4c);

3. Perform the local complementation operation on qubit i (Figure 3.4d);

4. Z-measure qubit i (Figure 3.4e).

A comparison between the two possible distribution schemes, which are equivalent up to LU, is made

in Figures 3.5 and 3.6. After performing this set of operations, the final state is also a star-graph state,

making it easier to understand why after repeating this protocol throughout the tree will always result in

a star-graph state. Some intermediary nodes might not be terminal nodes (these are called Steiner nodes)

and while in the star expansion protocol in [25], those nodes are measured before stepping on another

node, in this protocol, only for calculation purposes, we only measure them at the end even though the

result is the same.

(a) Initial states. (b) Step 1

(c) Step 2 (d) Step 3

(e) Step 4

Figure 3.4: Merging steps of a n-GHZ state with a m-GHZ state. Each dot is a qubit, each
line represents a relation between the two qubits connected. Since they are graph states,
each qubit is in fact in the |+〉 state and each line represents a CZ gate between both
qubits (recall Section 2.1.4, namely the graph states subsection). The qubits that are filled
represent the ones affected by the depolarising channel.

2n-GHZ stands for the GHZ state with n qubits, or, as introduced in the first chapter, the n-Cat state.

34

(a) Beginning of the distribution scheme. (b) After star expansion over the first Steiner node.

(c) After star expansion over the second Steiner node. (d) After star expansion over the third Steiner node.

Figure 3.5: Usual steps of distribution scheme presented in [25] for a distribution of a 4-GHZ
state, consisting of successive applications of the star expansion protocol over the Steiner
nodes.

(a) Starting with 4 different star graphs. (b) After merging the first two stars.

(c) After merging with the third star. (d) After merging with the fourth star.

Figure 3.6: Steps for distribution considering successive star-graph merges introduced in
this section as a simpler way of calculating the effects on the final fidelity.

35

3.2.2 Mixed States and Fidelity

Finding a metric for the final state fidelity is equivalent to verifying how the star expansion affects the

initial state, using depolarising channels to model noise in each entangled pair. Using the approach

introduced in the previous section, it is easier to calculate the final form of the GHZ state. Because the

controlled-Z operations applied in step 1 do not commute with the action of the depolarising channel, the

final form will be slightly different than just having a depolarising channel in each qubit of the GHZ state.

In fact, the only terms that change are the non-GHZ terms, i.e, if we consider the density matrix to be

in one orthonormal basis with GHZ being one of the basis states3 the density matrix entry correspondent

to the GHZ state would always be the same, and in the end the one necessary to calculate the fidelity.

The necessary calculations for the fidelity (and the notation used in this section) are performed in

Section A.1 and result in the final fidelity of the state given by:

f =
E(FS,#S) ·

∏
Fti∈FT

1+2Fti
3 +O(FS,#S) ·

∏
Fti∈FT

2(1−Fti)
3 +

∏
Fi∈FT∪FS

4Fi−1
3

2
(3.21)

Even though this expression is somewhat complicated, it is important to consider that for the 3-GHZ

state, there are no Steiner nodes and the final form is identical to applying just one depolarising channel

in each qubit, making Equation 3.21 become:

f =

∏
Fti∈FT

1+2Fti
3 +

∏
Fti∈FT

2(1−Fti)
3 +

∏
Fi∈FT

4Fi−1
3

2
(3.22)

3.3 Distributing Arbitrary States

Unlike [25], where all states considered for distribution have necessarily a correspondent graph state (up

to LU), we want to generalise for any state possible. For this we take advantage of properties of bipartite

entanglement, namely the symmetry in the |φ+〉 pair. We start by proposing a protocol for pure states,

equivalently a perfect network, and then analyse the possibility of mixed states.

3.3.1 Arbitrary n-Qubit State

Let us start by defining an arbitrary state. We choose the usual orthonormal basis {|0〉 , |1〉} for each

qubit. Any n-qubit state can be written as:

|ψ〉 = α0 |00...00〉+ α1 |00...01〉+ α2 |00...10〉+ ...+ α2n−1 |11...11〉 (3.23)

subject to
√∑

i |αi|2 = 1 for proper normalisation. These englobes all possible states for n qubits,

entangled or not. For simplification purposes, let us rewrite this state in a more compact way:

|ψ〉 =

2n−1∑
m=0

αm |mn−1...m2m1m0〉 (3.24)

where mn−1...m2m1m0 is the binary decomposition with size n of m.

3this generalisation is made by applying all combinations of {1, X̂, Ẑ, X̂Ẑ} to each qubit of the GHZ state but the first

36

Figure 3.7: Example of a shortest star (highlighted in orange) connecting a set of 4 terminals
in a network. This corresponds to the optimal solution for distributing a 4 qubit arbitrary
state, minimizing the number of entangled pairs used.

3.3.2 Scheme for Distribution

Consider we want to distribute a n qubit state through a set of n terminals across an arbitrary network.

From entanglement generation and entanglement swapping protocols, it is possible to generate a link

between any two nodes in a network, so let us consider that our starting point is a star graph (see Figure

3.7) connecting the n terminals and a center node (for once, if the center node is one of the terminals,

create a virtual node inside the center node and an ancilla4 qubit). This state can be described as follows:

|S〉 =

n⊗
k=1

|φ+〉k,ak (3.25)

where ak are the qubits in the center node, part of the pair shared with the kth terminal. Moreover,

we can rewrite this state in a form that separates the qubits present in the center node and the qubits

present in the terminals. Because of the symmetry of the |φ+〉 state, this is very simple to do:

|S〉 =

n⊗
k=1

|φ+〉k,ak

=
1√
2n

[
|00...00〉1,2,..,n ⊗ |00...00〉a1,a2,...,an +

|00...01〉1,2,..,n ⊗ |00...01〉a1,a2,...,an +

...

|11...11〉1,2,..,n ⊗ |11...11〉a1,a2,...,an
]

=
1√
2n

2n−1∑
m=0

|mn−1...m1m0〉1,2,..,n ⊗ |mn−1...m1m0〉a1,a2,...,an

(3.26)

Since the only qubits that are in the same node are the ones on the center node, we can do whichever

operation we want in the center node, affecting whichever qubits necessary. From the forms of Equations

4An ancilla qubit is usually used in quantum related things to express an auxiliary qubit that is necessary to make some
operations.

37

3.24 and 3.26, it is simple to see that a projection of the center node qubits in an arbitrary state would

create that same arbitrary state throughout the terminal nodes, i.e:

〈ψ|A |S〉 〈S| |ψ〉A =

2n−1∑
m,m′=0

2n−1∑
l,l′=0

α∗m · αm′
2n

〈m|A
(
|l〉N ⊗ |l〉A 〈l

′|N ⊗ 〈l
′|A
)
|m′〉A

=

2n−1∑
m,m′=0

2n−1∑
l,l′=0

α∗m · αm′
2n

|l〉N 〈l
′|N δl,mδl′,m′

=

2n−1∑
l=0

2n−1∑
l′=0

α∗l · αl′
2n

|l〉N 〈l
′|N

=
1

2n
|ψ〉N 〈ψ|N

(3.27)

where N = 1, 2, ...n and A = a1, a2, ..., an correspond to the qubits in each terminal and inside

the center node, respectively, and for every k ∈ N, |k〉 = |kn−1...k1k0〉 where kn−1...k1k0 is the binary

decomposition of lenght n of k.

If the |ψ〉 state is part of an orthonormal basis, then the probability of getting the final state across

the terminal can be set to 1 by performing corrections depending on the measurement obtained in the

center node. This can be regarded as a generalisation of quantum teleportation for n qubits.

3.3.3 Mixed States and Fidelity

Starting from the state in Equation 3.25, we can introduce the Werner states by applying depolarising

channels on the qubits outside the center node 5, i.e the terminal nodes:

DN

(
|S〉 〈S| , {Fi}i∈N

)
= DN

(1

2n

2n−1∑
m,m′=0

|m〉N ⊗ |m〉A 〈m
′|N ⊗ 〈m

′|A , {Fi}i∈N
)

(3.28)

Using the properties of the depolarising channel we get that:

DN

(
|S〉 〈S| , {Fi}i∈N

)
=

1

2n

2n−1∑
m,m′=0

DN

(
|m〉N 〈m

′|N , {Fi}i∈N
)
⊗ |m〉A 〈m

′|A (3.29)

From here, projecting the qubits inside the center node in the desired state, following the scheme of

distribution presented in the previous section, will result in the desired state distributed amongst the

terminal nodes with a depolarising channel applied to each pair applied over the correspondent qubit:

〈ψ|A DN

(
|S〉 〈S| , {Fi}i∈N

)
|ψ〉A =

1

2n

2n−1∑
m,m′=0

DN

(
|m〉N 〈m

′|N , {Fi}i∈N
)
⊗ 〈ψ|A |m〉A 〈m

′|A |ψ〉A

=
1

2n
DN

(
|ψ〉N 〈ψ|N , {Fi}i∈N

)
(3.30)

5Notice that each of this entangled pairs connecting the center node and each terminal node is not necessarily only one
link, but can be a chain of links. However, given the entanglement swapping protocol, we can transform the chain of links
into an entangled pair connecting each center node to each terminal node. Even after modelling each individual link as a
Werner state, the final entangled pair can also be modelled as a Werner state with a fidelity that will depend on each of
its link fidelities. If the change of variable to γs is considered, then the γ value of the entangled pair connecting the center
node to the terminal is just the multiplication of all the γ values of each link constituting the chain connecting the two
nodes.

38

To find the metric translates to the simpler problem of finding the completely mixed state 6 using the

value of the network fidelity for each link and calculating its fidelity. In the case of a m-qubit GHZ state,

the final fidelity is calculated in Section A.2, Equation A.19 to be:

f =

∏m
i=1

1+2Fi
3 +

∏m
i=1

2(1−Fi)
3 +

∏m
i=1

4Fi−1
3

2

f =

∏m
i=1

1+γi
2 +

∏m
i=1

1−γi
2 +

∏m
i=1 γi

2

(3.31)

The correspondent algebra for trees (as we will introduce in Chapter 4, but for now regard it as an

usual algebra for routing) will be given by fGHZ :
(

[1/2; 1) ∪ {0},≥, (1/2; 1), (0; 1)3, 0,⊕GHZ , h
)

where

⊕GHZ is the following binary operation:

⊕GHZ : (0; 1)3 × (1/2; 1) −→ (0; 1)3

({a, b, c}, fi:j) 7−→ {a ·
1 + 2fi:j

3
, b · 2(1− fi:j)

3
, c · 4fi:j − 1

3
}

(3.32)

And h(·) is the following function:

h({a, b, c}) =


a+b+c

2 , if a+b+c
2 ≥ 1/2

0 , if a+b+c
2 < 1/2

(3.33)

This algebra is monotone, but not isotonic. However, as we will see in Chapter 4, there exists a special

property for this algebras that is present - path-isotonicity. The proof of all these properties can be found

in Section B.5.

Memory Decoherence Factor

In Section 3.1.5, the decoherence factor was introduced, depending on two different metrics: the mem-

ory decoherence time and the waiting time. This factor, despite depending on these two metrics, will

only affect the fidelity of the state. As seen in Equation 3.1, it will appear as an additional factor to

the γ values and therefore can be incorporated in the above mentioned fidelity metric for distribut-

ing arbitrary states. This means that after finding the non-dominated set of solutions for a path:

Xd = {(γ1, t1, τ1), ...(γn, tn, τn)}, the solution can be restrained to only one value, which is:

max
ν∈Xd

γν · e−
tν
τν = max

i=1,...,n
γi · e−

ti
τi (3.34)

This reduction of objectives can be crucial for reducing the complexity of our star-algorithm, as we

will see when we introduce the algorithm in Chapter 4. It is important to notice that this reduction can

only be made under the following assumption (or approximation): the center node coordinates each path,

taking into account its waiting time, so the bipartite entanglement distribution of every path finishes at

the same time, allowing the arbitrary state to be distributed as soon as all entangled pairs between the

center node and the terminals are generated. If this is not possible, then the metric will depend on the

difference between the biggest waiting time and all the others and the reduction can not be made for

6We say completely because every qubit is in a mixed state with a given fidelity.

39

the waiting time metric, i.e the metric must remain separate from the fidelity. These two situation are

equivalent to the following reductions, respectively:

(γ, twait, τ, psuc) 7−→ (γ · e−
twait
τ , psuc)

(γ, twait, τ, psuc) 7−→ (γ · e−
twait
τ , twait, psuc)

(3.35)

3.3.4 Probability of Success Metric for Distributing Arbitrary States

Identically to what has been done in Section 3.1.6, we can consider that each path has geometric dis-

tribution for the probability of success in achieving end-to-end bipartite entanglement and model the

probability of the final projection succeeding when distributing using the star scheme as another geomet-

ric distribution. As before, if everything is distributed geometrically, then the joint distribution is also

geometric ruled by the product of every individual parameter. This guarantees the same exact properties

as before, adding a new parameter depending on the center node that models the final projection (which

can be 1 if the final projection is deterministic, i.e there exists a set of corrections that can always retrieve

the desired state).

3.4 End-of-Chapter Remarks

In this chapter we first went over characterising the routing objectives for bipartite entanglement distri-

bution to enable a differentiation between paths and trees (which we will clarify in the next chapter). We

found four main objectives and described in depth their correspondent algebras (equivalently metrics),

proving some important properties. Concluding the bipartite entanglement, we introduced one scheme

for distributing GHZ states (and eventually graph states) from the literature and introduced a new triv-

ial scheme for distributing arbitrary states. For each of this schemes we analysed how each individual

entangled pair used to distribute the multipartite state would affect the fidelity of the final state, which

is crucial to define a correspondent metric for the fidelity and is one the main goals of this project. We

analysed the GHZ state, and furthermore provide a description compatible with more states, which is

also described in [33].

40

Chapter 4

Algorithms for Optimal Distribution

of Multipartite Entanglement

In the previous chapter both the protocols for creating the desired states and some corresponding metrics

have been explored. In this chapter, the best way to distribute the desired states is found by implementing

an algorithm and finding the properties that guarantee that the algorithm provides the set of optimal

solutions (in the sense of Pareto optimality, as introduced in Definition 2.3.8). This approach can be

expanded to more parameters that define entanglement distribution if necessary, as long as the properties

seen throughout this chapter are verified, making this approach a systematic approach for the problem

of finding the best way of distributing some type of multipartite entanglement.

We do this by first introducing a new concept, in line with the algebra for routing introduced in

Section 2.3, called algebra for trees. As the algebra for routing defined the framework for each parameter

when trying to find the best path, the algebra for trees will have a similar role when trying to find the

best tree.

After defining this new algebra for trees and some new interesting properties and conditions, we

introduce two different algorithms, one based on the GHZ distribution scheme from Section 3.2 and

another one based on the arbitrary state distribution from Section 3.3. These algorithms take advantage

of the properties of these algebras, as well as of the algorithm for the multi-objective shortest-path

problem (MOSP) from Chapter 2.

4.1 Algebra for Trees

Given the definition of algebra for routing introduced in Chapter 2, an extension for trees can be made

in a trivial manner, where instead of edges (described by labels) we have paths and instead of paths

(described by signatures) we have trees. Just as every edge is a path, we have that every path is also a

tree, the set of inclusions is Edges ⊂ Paths ⊂ Trees. The definition comes as follows:

Definition 4.1.1. Algebra for Trees is an ordered septet (W,�,Σ,Ξ, φ,⊕, f) comprised as follows: W a

set of weights, � a total order, Σ a set of labels, Ξ a set of signatures, φ a special signature, ⊕ a binary

41

operation that maps pairs of labels and signatures into a signature and a function f that maps signatures

into weights.

This allows to take advantage of the definitions of monotonicity, isotonicity, multi-objective algebras

and dominance exactly as before, but now applied to the new algebras for trees. Some extra definitions

are also of special interest for our problem, namely to take into account the fidelity constraints of a

minimum fidelity and a proper extension from protocol to distribute end-to-end bipartite entanglement

to protocol to distribute multipartite entanglement.

Another important definition to introduce is the definition of truncated algebras, which we have

already came across in Section 3.1.4. A truncated algebra is helpful for defining algebras that have

thresholds, the reason behind why the algebra for the fidelity is a truncated algebra, and making speed-

ups in intermediary steps of the algorithm.

Definition 4.1.2. (Truncated Algebra for Routing) Considering the regular algebra for routing (W,�

, L,Σ, φ,⊕, f), the truncated algebra for routing is a septet (W,�, L,Σ, φ,⊕, f̃) where, for ω ∈ Σ:

f̃(ω) :=

f(ω) for f(ω) � σtrunc

φ for f(ω) � σtrunc
(4.1)

As one can see from the definition, it is just a modification on the function that attributes a weight

to each signature, wether it is a path or a tree.

To realise the distribution of multipartite entanglement, some schemes might use different protocols

to produce bipartite entanglement in intermediary steps than the ones used to produce multipartite

entanglement, as we will see further ahead. For this reason, a new form of isotonicity is necessary to

guarantee that the two protocols are compatible with each other. This new form of isotonicity is what

we call path-isotonicity and is given by the following definition:

Definition 4.1.3. (Path-Isotonicity) An algebra for trees (W,�,Σ,Ξ, φ,⊕, f) is said to be path-isotone

if:

∀ σ1, σ2 ∈ Σ, t ∈ Ξ : σ1 � σ2 ⇒ f(t⊕ σ1) � f(t⊕ σ2)

One additional definition, for the sake of coherence, is that of possible tree, in the same way as the

possible path is defined in Definition 2.3.9.

Definition 4.1.4. (Possible Tree) let T be a tree represented by t ∈ {Ξi}. Similarly to a possible path,

t is said to be a possible tree if ∀ i = 1, ..., k : ti 6= φi.

From the top, given the definition of these new algebras for trees and the usual definitions of mono-

tonicity and isotonicity of Section 2.3.1, existence conditions for a shortest-tree or shortest-star can be

made. More than that, some truncations, once possible solutions are found, can be made to refine the

search space, which results in algorithm speed-ups. In Theorem 4.1.1, upper-bounds (in the sense of

42

the best possible tree) for the shortest-tree are defined, which comes with the consequence of finding a

necessary (not sufficient though) condition for the existence of the shortest-tree in Lemma 4.1.2.

Theorem 4.1.1. Under a monotone algebra for trees, any tree t ∈ Ξ connecting a set of T ≥ 3 terminals

will follow that, ∀ u 6= v ∈ terminals : f(ω(u, v)) � f(t) with ω(u, v) ∈ Σ being the shortest-path

connecting the two terminals u and v.

Proof. W.l.o.g consider a tree t with 3 terminals, a 6= b 6= c. Now, assume we find the shortest path

between a and b, patha:b. There are two possible cases for the tree from this point: (1) either patha:b ∈ t or

(2) patha:b /∈ t. For the first case, since a 6= b 6= c, then there is necessarily another path connecting some

vertice in patha:b to the vertice c. From the monoticity we get that f(patha:b) � f(t). The second case

would imply that ∃ patha:b, part of the minimum tree, but in that case f(pathab) � f(patha:b) � f(t).

Doing this for every path connecting two nodes of the tree, the proof is completed for the 3-tree. For the

more general tree, the same can be done considering that now instead of adding paths, we add trees.

Lemma 4.1.2. Under a monotone algebra, a necessary condition for the existence of a shortest-tree,

distributed across a graph G(V,E) with terminals ∈ V is that: ∀ u 6= v ∈ terminals : f(ω(u, v)) 6= φ.

Proof. Follows from Theorem 4.1.1.

Remark. Theorem 4.1.1 and Lemma 4.1.2 also apply for the multi-objective set of algebras for trees,

using individual monotonicity, the dominance relation and the set of Pareto Optimal paths.

Because of Theorem 4.1.1, some modifications can be made in intermediary steps of the algorithm that

take advantage of the truncated algebras, further refining the possible solutions and discarding solutions

worse than the ones already found. Consider that, while an algorithm is finding the shortest-tree, a set of

non-dominated solutions is found A = {T1, T2, ..., Tp}. Because of this, the algebra for finding solutions

can be truncated using the maximum/minimum values for the objectives of the trees in A, meaning that

we are not interested in finding solutions that are worse than every possible solution already found. The

maximum/minimum is decided based on the total order � of each objective. If each tree Tj is described

by a set of signatures θj = {θ1
j , ..., θ

k
j } where k is the number of objectives, then for each objective i,

there is a ordering:

f i(θij1) �i f i(θij2) �i ... �i f i(θijp) (4.2)

Then, the value for trunci = {max/mintree∈Cf
i(θi) is the right side value of Equation 4.2, i.e the worst

possible solution. This way, when finding a tree that is worse than the truncation tupple trunc = {trunci},

there exists necessarily a tree in the set of solutions A that already dominates such tree.

4.2 Steiner Tree Algorithm

Finding the multi-objective Steiner tree connecting a set of terminals is the solution of the first scheme

presented in Section 3.2. The Steiner tree solves the problem of finding the smallest weight tree graph

that spans a set of terminals, including Steiner nodes which are the intermediary necessary nodes to

43

Figure 4.1: Decomposition of a tree in several branches.

connect the terminals. This problem exact solution is generally NP-Hard [56, 57], and our particular

case, with the multi-objective problem, only creates more difficulties.

To create an algorithm that is capable of finding the shortest-tree connecting a set of terminals,

because of the natural extension between algebra for paths and algebra for trees, we tried to adapt the

initial multi-objective shortest-path Algorithm 1 in Section 2.3.3 to find the multi-objective shortest-tree.

The key point this time is to define which trees are comparable and which are not, which also takes

some intuition from the dominance relation. We arrived at the conclusion that only trees connecting the

same set of terminals are comparable, i.e while visiting some node, only trees connecting the same set of

terminals can be compared, like in the dominance relation only trees that are worse for every objective

can be discarded.

This way, the dominance relationship is slightly modified in Algorithm 2, by imposing that trees

not connecting the same set of terminals can not dominate each other. Since the problem itself is

computationally extensive, a approximated approach can be made imposing a stop condition as soon as

some tree connecting all terminals is found. We used a computational structure to describe the trees

separating them by the different branches they are constituted, i.e the paths connecting points where

the paths divide (an example of these branches can be found in Figure 4.1). This structure allows the

verification of comparable trees to be easier while allowing to distinguish different protocols for creating

paths, which might be necessary depending on the distribution schemes.

44

Algorithm 2 (k)-Multi-Objective Steiner Tree

1: procedure Steiner-Tree(terminal) . Finds the set of non-dominated trees connecting terminal
2: Nodes := Set of nodes u of the network, each with underlying list of trees Treesu initialised as

empty;
3: A := Set of visited nodes of the network initialised as empty;
4: B := Set of nodes to visit ordered as a priority queue data structure, with priority defined by the

dominance relation;
5: C := Set of non-dominated trees connecting all terminals;
6: for node ∈ terminal do
7: Initialise node← {eWi

}; . {eWi
} are the neutral elements of (Ξi,⊕i)

8: Initialise number of terminals connected node← 1;
9: Add node to B;

10: while B 6= empty do
11: node← Top(B) and Remove node from A and B;
12: for v ∈ neighbours(node) do

13: Treesadd ← possible trees from {Trees(i)
node ⊕ Edge(node, v)};

14: if Treesv = empty then
15: Treesv ← Treesadd;
16: Add v to B;

17: if Treesv 6= empty then

18: Treesp ← Possible non-dominated trees from {Treesadd(i) ∪ Trees(j)
v }i,j ; . Must be

trees!
19: if ∃ {Treesk} in Treesp that connect all terminals then
20: Add {Treesk} to C and remove dominated ones from C;
21: trunc = {max/mintree∈Cf

i(ωi)}; . the max/min is defined by the order
22: Define trunc has the truncation weights;

23: if Treesp 6= Treesv then
24: Treesv ← Treesp

25: if v ∈ A then . To visit
26: Update v in B;

27: if v /∈ A then . To Revisit
28: Add v to A and B;

4.3 Star Algorithm

In Section 3.3 we introduced a distribution scheme for arbitrary multipartite states and the correspondent

algebras. Using that, an algorithm that finds the best way to distribute the desired state in a quantum

network can be implemented. Since a star graph is always a tree, we can use the definition of algebra for

trees to find the necessary properties of the algebra that guarantee the optimal solutions of the algorithm.

First, let us prove that if the algebra for trees containing the metric correspondent to the star scheme

distribution is path-isotonic, then the shortest-star (the star corresponding to the best way of distribution)

contains all the shortest-paths between the center node and the terminal nodes.

Proposition 4.3.1. For the shortest-star with n terminals, the paths connecting the center node and the

terminals must be the shortest-paths, if the underlying algebra for trees is path-isotone.

Proof. Consider that the center node is connected by n paths (this does not happen if the center node is

one of the terminals, but for that case consider the star composed of n− 1 paths), indexed by a number

between 1 and n: path1, path2, ...pathn ∈ Σ. Each path is connected to one of the n terminals. Fix all

45

paths but path1. Let t ∈ Ξ be correspondent to the tree formed by path2 ∪ path3 ∪ ... ∪ pathn. Now

consider there ∃ path1 : path1 � path1, due to path-isotonicity of the algebra for trees, then if path1 �

path1 ⇒ f(t⊕ path1) � f(t⊕ path1) and the shortest tree would be path1 ∪ path2 ∪ path3 ∪ ... ∪ pathn.

Doing this for every other path, we get that the shortest-star is the one with every branch being the

shortest-path between the center node and the terminals.

Remark. The same applies for the multi-objective shortest-star problem, with the paths being the set of

Pareto-Optimal paths and requiring that every algebra for trees is path-isotone.

Proof. Consider that path1 /∈ X1 where X1 is the set of Pareto-Optimal paths between the node 1 and

the center node. Then, ∃ path1 such that path1 D path1 and from here the star containing path1 is better

than the one containing path1. The rest of the proof is identical to the proof of Theorem 4.3.1.

The star-algorithm is very easy to understand: first it finds the shortest-path between each terminal

and every other node using Algorithm 1 and then creates all possible stars, only choosing the non-

dominated ones for the set of solutions and constantly updating the set of solutions if any new solution

is found and a previous one must be discarded. Some speed-ups are performed in several stages of the

algorithm, derived from properties of the algebras.

Algorithm 3 Exact Algorithm for Star Graph

1: procedure T-Star Exact(terminal)
2: A := Set of possible star graphs, ordered as a priority queue, with priority defined by the domi-

nance relation;
3: trunc = {φi};
4: for node ∈ terminal do
5: procedure Shortest-Path(node) subject to trunc;

6: for Tree T = ∪i,jPathj(node, terminali) do
7: if T is possible and non-dominated by any tree in A then
8: Add T to A;

9: trunc = {max/mintree∈Af
i(ωi)}; . the max/min is defined by the order

10: Erase all paths from node bigger than trunc;

11: Nodesreach ← Choose the set of nodes reachable from every terminal;
12: for node ∈ Nodesreach do
13: for Tree T = ∪i,jPathj(node, terminali) do
14: if T is possible and non-dominated by any tree in A then
15: Add T to A;

This algorithm searches the possible shortest-stars connecting the set of terminals after finding the

best path between each terminal and all other terminals. Some key advantages of this algorithm are:

1. If there is no connection between some pair of terminals, it is noticed early in the algorithm and,

because of Lemma 4.1.2, there is no possible solution which terminates the algorithm;

2. As soon as the algorithm starts finding paths, it creates lower bounds on the possible trees. If there

is some solution in which the terminal node is the center node, it may refine the upcoming path

searches, by excluding paths that would result in worse trees;

46

3. If there are physical constraints such as no link can be used twice, they are easy to implement by

discarding such options. However, if this is only done a posteriori, for a number of terminals bigger

than three, then we can only retrieve at least a part of the optimal solution and divise a strategy

that outputs a flag saying if there might exist more solutions or not, by keeping in a separate list

the solutions where each link might be used twice;

This algorithm is exact, in the sense that finds the set of Pareto optimal stars. A proof of this is

performed in the following proposition.

Proposition 4.3.2. Under a monotone and isotone algebras for shortest-paths and monotone and path-

isotone algebras for trees, Algorithm 3 will converge to the set of Pareto optimal stars.

Proof. Every tree analysed by the algorithm will be constituted by a center node and one of the Pareto

optimal paths from the center node to each terminal. From Proposition 4.3.1 we get that, for each

placement of the center node, the trees considered are the optimal trees. As for the truncation used in

step 5 of the algorithm, we need to prove that doing this prevents any optimal tree from being discarded.

The first time Shortest-Path algorithm runs, there is no truncation (trunc = {φi} ≡ no truncation),

so everything is as before. For the second time, a value for the truncation weights is calculated from the

max/min values of each objective, making every tree dominated by the truncation weights also dominated

by all the stars found so far (see Equation 4.2). Now consider we run the algorithm again starting from

another node, but subject to the truncation weights. This would imply that any discarded paths would

be dominated by the truncation weights and consequently dominated by the shortest trees found so far.

As stated in Theorem 4.1.1, if there is a path z such that ∀ i, trunci �i f i(zi), than, every tree t̃ with

that path would have that ∀ i, trunci �i f i(zi) �i f i(t̃i) and, therefore, would be dominated by the tree

found before, making it not a suitable solution. By doing this, at each shortest-path search, all the trees

discarded are not optimal solutions and always dominated by previously found potential solutions.

In the end, all other possible choices for the center node are considered and for each of them, using

Theorem 4.3.1, the possible non-dominated star-graphs are chosen.

4.4 Algorithms Comparison

There are some key differences in the algorithms that come mostly from trying to solve two different

problems. In the Steiner-tree algorithm, the problem is much more complex than to find the shortest-

star, although for three terminals they are the same problem, since every tree connecting three terminals

is always a star (the proof of this is very intuitive, just consider all choices of the shortest-tree and realise

that all possible choices are, in fact also a star-graph). While a proof of exactness is not presented for

the Steiner-tree algorithm, it is at least an approximated algorithm from the construction, while for the

Star-algorithm, if the necessary properties are gathered, the algorithm is exact.

There is a big advantage in the Star-algorithm that comes into play when, to conserve the isotonicity

property of a complex metric depending on several parameters, the metric is divided in simpler isotone

algebras (e.g consider the fidelity with the decoherence factor depending on the waiting time and the

47

quantum memory decoherence time). Every time this decomposition in isotone algebras is done, in the

step where we find for every center node, the possible paths to each path, the non-dominated paths can

be filtered by returning to the more complex metric and find the only best solution.

One more key distinction is, from the structure of the Steiner tree algorithm, by independently

searching paths starting at each terminal, if the terminals are close together, the algorithm runtime will

probably decrease significantly.

4.5 Simulations

To illustrate the star-algorithm, we considered a simple GHZ distribution that took into account the

fidelity of the final state and the probability of success after all entanglement swapping and bipartite

entanglement generation, and implemented the algorithms, both the multi-objective shortest-path and

the star-algorithm that depended on it. No simulations can be performed without first finding how the

parameters are distributed in the network, which hides in itself an important problem - scaling of the

network. In this section we first describe the scaling problem and then present the results of the algorithm

for the chosen scalings.

4.5.1 Scaling of the Network

In Section 2.2 we introduced the concept of structural and functional connectivity and were only concerned

with the concept of structural connectivity, from the graph definition. In the next chapter, we introduced

several metrics and one of them had a threshold, the fidelity metric (Section 3.1.4). This threshold

guarantees that entanglement is still present in the final state and if the fidelity drops below such threshold,

the path is rendered useless, i.e it looses its functionality. When dealing with networks subject to this

thresholds, to ensure that we can connect any two nodes of the network, not only structurally, but also

functionally, we need to look at the distribution of the parameters across the network.

In our simulations, the only parameter with a threshold is the fidelity. Working under the γ change

of variables introduced in Equation 2.35, let us assume that the γ value for each edge is distributed

according to some probability distribution PD(x), x ∈ [0, 1]. Assuming that the structural connectivity

of the network gives us a value for the network diameter (which is related with the maximum size of

the shortest paths connecting nodes in the network), then, ideally, if a network is properly scaled, its

functional connectivity should be the same, i.e the parameters should be distributed in such a way that

paths with the length of the network diameter should also be functionally connected. Alternatively, the

inverse interpretation of the scaling problem is to find the size of the connected components based on the

distribution of parameters.

To analise the probability distribution of the paths let Γi ∼ PD correspond to a realisation of a

single γ value of one edge indexed by i. Considering a concatenation of edges Γ1 · Γ2 · ... · Γn where

Γi ⊥⊥ Γj , ∀i 6= j, their joint distribution, i.e the γ value distribution of the path is given by the nth

product of their distributions. The average value of the distribution is:

〈Γ1 · Γ2 · ... · Γn〉 = 〈Γ1〉 · 〈Γ2〉 · ... · 〈Γn〉 (4.3)

48

In our case, we considered that the distribution of the γ values across each edge was a uniform

distribution in [γmin, 1], with a probability distribution function given by:

PU (x) =


1

1−γmin , if x ∈ [γmin, 1]

0 , else

(4.4)

The probability of distribution of a product of n independent realisations of a random variable X ∼

U(a, b) is obtained in [58]:

fXn(x) =


fkX(x), an−k+1bk−1 ≤ x ≤ an−kbk

k = 1, 2, . . . n

0, otherwise

(4.5)

fkX(x) =

n−k∑
j=0

(−1)j

(b− a)n(n− 1)!

 n

j

(ln
bn−jaj

x

)n−1

(4.6)

Using this result, making a → γmin and b → 1, we can retrieve the probability distribution for the

γ value of a path composed of n independent edges. Letting the minimum value of the γ values be a

power of γtrunc, the value of the threshold, then we can calculate the probability of P
(

Γk > γtrunc

)
for

the multiple options of γtrunc = γnmin. The values for every pair of k and n are given, in the limit where

γmin → 11 by:

P
(

Γk > γnmin

)
=



1 , k ≤ n

1− T (k−1,k−n)
k! , n < k < 2n

1/2 , k = 2n

T (k−1,n)
k! , 2n < k

(4.7)

where, T (n, k) =

k∑
j=0

((−1)j · (k − j)n+1) ·
(
n+ 1

j

)
(4.8)

This sequence T (n, k) (see sequence A179457 from OEIS) is the sequence that describes the number

of permutation trees 2 of power n with width not exceeding k.

This probability restricted to P
(

Γk > γnmin

)
> 10−5 is plotted in Figure 4.2.

Since the value for the last branch in Equation 4.7 , T (k−1,n)
k! rapidly decreases when extending the

path (correspondent to increasing the values of k), a good first approach in the scaling would be to

consider that:

γ
d/α
min = γtrunc (4.9)

1This is an approximation, validated by the fact that that in the limit of big networks (n → logN ↗) since γtrunc is
at least 1/3, then 1/31/n → 1

2A permutation tree is a labeled rooted tree that has vertex set 0,1,2,..,n and root 0, and in which each child is larger
than its parent and the children are in ascending order from the left to the right. The power of a permutation tree is the
number of descendants of the root. The height of a permutation tree is the number of descendants of the root on the longest
chain starting at the root and ending at a leaf. The width of a permutation tree is the number of leafs.

49

Figure 4.2: Probability of k independent realisations of Γ (i.e a path with k edges) having
a γ value bigger than γtrunc = γnmin .

Where d is the network diameter. Before implementing the final algorithms, simulations of the scaling

for the network were performed by varying the values of α in Equation 4.9 by small steps and measuring

the number of nodes reached, normalised to the number of nodes of the network, for both an ER network

with 1000 and 5000 nodes and a SCL network with 100 and 2500 nodes. The results are demonstrated

in Figure 4.3.

(a) (b)

(c) (d)

Figure 4.3: Simulations for the scaling in an ER network with (a) 1000 nodes and (b) 5000
nodes and in a SCL network with (c) 100 nodes and (d) 2500 nodes.

It is necessary to note that for the ER network scaling, the value of d considered was lnN instead of

50

the usual lnN/ lnλ. This means values of α should be corrected by an amount of lnλ, which in these

simulations were λ = 3.

From the figures, we get that for ER networks the scaling does not depend on the number of nodes,

which comes in line with the tree-approximation, but for SCL networks, as we increase the number of

nodes the α for which the network becomes disconnected starts to increase, which suggests that the

scaling with the diameter might not be the best suited. However, since the scaling is a whole problem

on its own, we considered that α · lnλ = 2 for ER networks and α = 4 for SCL networks throughout the

simulations in the next section.

4.5.2 Simulations Results

In this section we start by presenting the results for the algorithm for the multi-objective shortest-path

problem with routing objectives given by the fidelity represented by the γ variables with the algebras

described in Section 3.1.4 and the probability of success with the correspondent algebras described in

Section 3.1.6. The scaling of the network is the same described in the previous section. The important

parameters necessary for constructing the networks are:

1. Type of network - ER or SCL

2. In the case of ER, the average degree λ

3. The threshold γ value γtrunc

4. The minimum probability of success for entanglement generation pmin

5. The minimum probability of success for entanglement swapping kmin

From this point, the simulation code will create 20 different networks generated with the same param-

eters and for each network will run the multi-objective shortest-path algorithm for 20 different randomly

chosen nodes of each network, realising therefore 400 random samples of the algorithm for each set of

parameters. In Figures 4.4a to 4.4c, the simulations for ER networks, varying in the average degree and

in the number of nodes are presented for γtrunc = 0.9, pmin = kmin = 0.9. In Figure 4.4d, the simulations

for SCL networks, varying in the number of nodes are presented, again for the same values γtrunc = 0.9,

pmin = kmin = 0.9.

51

(a) Simulation of MOSP in an ER network with average degree λ = 3.

(b) Simulation of MOSP in an ER network with average degree λ = 5.

(c) Simulation of MOSP in an ER network with average degree λ = 7.

(d) Simulation of MOSP in a SCL network.

Figure 4.4: In the above figures, the left image is always correspondent to do with the
complexity of the algorithm (how much time in CPU clocks it takes to run the algorithm)
and the right image has to do with the hpaths quantity (how many optimal paths per node
exist after the algorithm finishes, as it will be better described in Section 4.6).

52

For ER networks, the simulations points for the complexity were fitted to the expression 4.10 and for

the SCL network, the simulations points for the complexity were fitted to the expression 4.12. In the case

of the quantity hpaths, the expressions for the fit were 4.11 for ER networks and 4.13 for SCL networks.

Our purpose in making these fits is not to study in detail the behaviour, but to present arguments that

this algorithm runs in polynomial time, and almost linearly if we consider ER networks, which are capable

of modelling networks in the real world. In Section 4.6 we will present calculations on the complexity

that justify this observed behaviour and find how does the complexity of this algorithm relate with the

setup problem.

gER(N) = a0 + a1N · (1 + a2 logN)2 (4.10)

hER(N) = ã1 + ã2 logN (4.11)

gSCL(N) = b0 + b1N · (1 + b2
√
N + b3N)2 (4.12)

hSCL(N) = b̃1 + b̃2
√
N + b̃3N (4.13)

Figure 4.5: Simulations for the MOSP algorithm in an ER network: comparison for different
average degrees λ. From the complexity points, we can infer a possible linear dependency
on the average degree.

Moving to the Star algorithm, we tested the algorithm for finding first 3-stars, varying the number of

nodes and the average degree and then varying the number of terminals. The scaling used is the same

scaling as before, and so are the values for γtrunc = 0.9, pmin = 0.9 and kmin = 0.9. While the simulation

data from MOSP was fitted to the expressions from 4.10 to 4.13, the fits from the Star-algorithm have

been modified: for the complexity in ER networks expression 4.14 was used and 4.15 in the case of SCL

networks. Moreover, the multipartite fidelity for the metric used was the one present in Equation 3.31.

g̃ER(N) = a0 + a1N · (1 + a2 logN)3 (4.14)

g̃SCL(N) = b0 + b1N · (1 + b2
√
N + b3N)3 (4.15)

The expressions for the average number of optimal stars is the same as the expression for the average

number of optimal paths.

53

(a) Simulation of the Star algorithm for a 3-star in an ER network with average degree λ = 3.

(b) Simulation of the Star algorithm for a 3-star in an ER network with average degree λ = 5.

(c) Simulation of the Star algorithm for a 3-star in an ER network with average degree λ = 7.

(d) Simulation of the Star algorithm for a 3-star in an SCL network.

Figure 4.6: In the above figures, the left image is always correspondent to the complexity of
the algorithm (how much time in CPU clocks it takes to run the algorithm) and the right
image has to do with the number of optimal stars found by the algorithm.

54

Figure 4.7: Simulations for the Star-algorithm for a 3-Tree in an ER network: comparison
in the average degree λ

One important aspect of this algorithm is that, more than just finding the best 3-star (which is always

equivalent to finding the best 3-tree), the algorithm is also capable of finding the shortest T-star, with

T ≥ 4. Because of this, using the same metric for multipartite GHZ distribution, we simulated for T = 4

and T = 5, for both ER networks with λ = 3 and SCL networks. The results are presented in Figures

4.8a and 4.8b and the fit models were again modificated to:

g̃ER(N,T) = a0 + a1N · (1 + a2 logN)T (4.16)

g̃SCL(N,T) = b0 + b1N · (1 + b2
√
N + b3N)T (4.17)

(a) (b)

Figure 4.8: Simulations for the Star-algorithm varying the number of terminals. Notice that
for SCL networks, when T=5 the complexity is inferior. This is explained by the fact that
the simulations where solutions were found are mainly constituted by sets of terminals that
are ”closer”, since when adding one more terminal resulted in sets of empty solutions which
data was not considered for these simulations.

While the simulations mainly focus on the Star algorithm, which is exact for any number of terminals,

we also present some simulations for the Steiner-tree algorithm presented in Section 4.2. There are two

striking features one can observe in the simulations: the average complexity is bigger than the one of the

star algorithm and the standard deviation is also much larger. The first can be explained by the fact

that this algorithm is structured to solve any Steiner tree, no matter how many terminals, which is a

55

much harder problem than finding the shortest-star. The second can be explained from the fact that, as

discussed in Section 4.4, if the terminals are very close, which might happen sometimes, the algorithm

search space might reduce a lot and a solution can be found in much less time. Given that the terminal

choice is completely arbitrary, this, together with the fact that the complexity depends on how close the

terminals are, will result in a larger oscillation for the values of complexity.

(a) Simulation of the Steiner Tree algorithm for a 3-tree in an ER network with average degree λ = 3.

(b) Simulation of the Steiner Tree algorithm for a 3-tree in an ER network with average degree λ = 5.

Figure 4.9: In the above figures, the left image is always correspondent to the complexity of
the algorithm (how much time in CPU clocks it takes to run the algorithm) and the right
image has to do with the number of optimal trees found by the algorithm.

The complexity data was fitted to the same expressions as the ones used for a 3-star in the star

algorithm (see Equation 4.14). We also verified how the MOSP algorithm would scale by including more

objectives. Taking into account our description of four objectives, correspondent to the four algebras

described in Chapter 3 : (γ, twait, τ, psuc), we simulated the algorithm using the same parameters for γ

and psuc introduced at the beginning of this section and for the waiting time and memory decoherence

time we used the following parameters (the units are made arbitrary):

1. The individual communication times for each entangled pair in [1, 100]

2. The individual communication times for each entangled pair in [1000, 10000]

These simulations are presented in Figure 4.10, where we compared the previous results for only two

objectives. We only present the results of simulations for the MOSP and not the Star algorithm since,

as explained in Section 3.3.3, after finding the optimal solutions for the four objectives, a reduction of

objectives could be made conjugating the fidelity, memory decoherence times and communication times

56

into a single one ({γ, twait, τ} 7→ γ · e−twait/τ), resulting in the Star algorithm depending again on only

two objectives.

(a) Comparison between 2 and 4 objectives MOSP algorithm in ER network with average degree λ = 3.

(b) Comparison between 2 and 4 objectives MOSP algorithm in ER network with average degree λ = 5.

(c) Comparison between 2 and 4 objectives MOSP algorithm in ER network with average degree λ = 7.

(d) Comparison between 2 and 4 objectives MOSP algorithm in SCL network. (Logarithimic scale)

Figure 4.10: Comparison between 2 and 4 objectives MOSP algorithm. Notice that the
scaling remains identical in form for ER networks while for SCL networks the number of
optimal paths grows quadratically which results in complexity scaling with a polinomial of
degree 5, instead of 3.

57

4.6 Complexity of Star-Algorithm

The star-algorithm needs the multi-objective shortest-path algorithm presented in Section 2.3.3, Algo-

rithm 1, since the first step in finding the shortest is finding the shortest-paths from each terminal to all

other nodes of the network. From the shortest-path algorithm structure, we can decompose its complexity

in the following elements:

1. How many nodes are visited or revisited, which depends on the number of nodes N , and how many

times each nodes is visited hvisit = hvisit(N,λ, ...)

2. Each time a node is visited, how many optimal paths hpaths = hpaths(N,λ, k, ...) it adds to its

neighbours

From these quantities we can draft a complexity for the algorithm, taking into account that before

adding a path from the visited node to its neighbour, the dominance relation must be verified for, at

most, all paths on the neighbour:

O
(
MOSP

)
= O

(
N · hvisit(N,λ)

)
· O
(
λ · hpaths(N,λ, k)2

)
(4.18)

The quantities hvisit and hpaths will rely heavily on the type of network and the parameters distribution

across the network. Using the distributions utilised in Section 4.5, we are able to calculate the complexity

of the algorithm by deriving expressions for the quantities hvisit and hpaths that depend on the network

type and parameter distributions, and therefore compare these results with the simulations. These

derivations can be found in Appendix C.

Considering that the star-algorithm structure, its complexity will depend on two different things: the

complexity of the multi-objective shortest-path algorithm and the number of possible choices for trees

that depend on the number of optimal paths from each terminal in each node. Therefore, the complexity

of the star-algorithm is given by:

O
(
Star

)
= O

(
T
)
· O
(
MOSP

)
+ O

(
N · hpaths(N,λ, k)T

)
(4.19)

Where T is the number of terminals.

In the case of an ER network, the quantity hvisit should grow with the number of neighbours, i.e the

average degree of the network. However, due to the priority queue ordering, this quantity is minimised

to an average of hvisit = const. For an SCL network, the quantity hvisit = const, since the number of

neighbours is always the same, from the network construction, and also from the priority queue ordering.

As for the quantity hpaths, which derivations can be found in Appendix C, it will depend on the type

of network and how the parameters are distributed. The results are the following:

1. ER networks with uniform distributions of the parameters fidelity and probability of success and

scaling of fidelity parameters according to Section 4.5.1

hpaths = 1 + η
logN

log 〈λ〉
(4.20)

58

2. SCL networks with uniform distributions of the parameters fidelity and probability of success and

scaling of fidelity parameters according to Section 4.5.1

hpaths =
√
N + ηN (4.21)

Using this, the complexity of the MOSP algorithm and the Star-algorithm can be calculated to be:

1. For ER networks:

MOSP Algorithm:

O
(
MOSP

)
= O

(
N · λ · hpaths(N,λ, k)2

)
= O

(
N · λ ·

(
1 + η

logN

log λ

)2) (4.22)

Star Algorithm:

O
(
Star

)
= O

(
T ·N · λ ·

(
1 + η

logN

log λ

)2

+N ·
(

1 + η
logN

log λ

)T)
(4.23)

2. For SCL networks:

MOSP Algorithm:

O
(
MOSP

)
= O

(
N · hpaths(N, k)2

)
= O

(
N ·

(√
N + ηN

)2) (4.24)

Star Algorithm:

O
(
Star

)
= O

(
T ·N ·

(√
N + ηN

)2

+N ·
(√

N + ηN
)T)

(4.25)

From these complexities for the different algorithms, we can observe that for ER networks, both the

MOSP and the Star algorithm are almost linear in the number of nodes of a network, making it a suitable

option for a future quantum network with a large number of quantum nodes. For the case of the SCL,

the complexity is not linear in the number of nodes, but it also is not exponential, growing polynomially

with the number of nodes. These derivations come in line with the numerical simulations made in the

previous section, corroborating the results.

4.7 End-of-Chapter Remarks

In this chapter we started by introducing something that came as a natural extension of an algebra

for routing, useful to describe distribution schemes for multipartite states. The algebras for trees go the

extra step of describing the metrics for multipartite states, while also taking into account different possible

metrics for bipartite states. We proceeded to introduce an algorithm that solves (at least approximately)

the multi-objective Steiner tree that was inspired by the MOSP algorithm introduced in the first chapter,

that is correspondent to the first multipartite scheme of distribution of the previous chapter. Afterwards,

59

we introduced an algorithm that solves exactly, under some properties of the metrics, the multi-objective

shortest star, which we reviewed in detail, and is also present in [33]. Next we presented some simulations,

as well as an important characteristic of a network, its scaling. We then corroborated our simulation

results with an in-depth analysis of the complexity of our algorithms. It is important to keep in mind that

while we used these algorithms in our approach, they are not unique. The approach can be formulated in

other ways providing that there exists an algorithm to solve it, for example through genetic algorithms

[59–61]. However, due to the properties of the underlying algebras, our algorithms take them into account

structurally, resulting in almost linear scaling with the number of nodes, for the case of an ER network.

60

Chapter 5

Concluding remarks

In the beginning of this thesis, we proposed to introduce a framework in which we gather the several

parts of the problem - the network parameters, the entanglement distribution schemes and the routing

algorithms - and assemble them in order to solve the routing problem when dealing with multipartite

entanglement distribution.

We did this by taking some concepts from classical routing theory - the algebras for routing and multi-

objective routing - that became how we would describe each of the parameters taken into account, when

finding the optimal way to distribute multipartite entanglement. We also used something very important

from quantum channels and operators theory that would allow us to derive simple expressions for the

fidelity of the final state. As we said in the beginning, the fidelity is a very important metric regarding

the functionality of a quantum state, which is why, having a new useful description of the depolarising

channel and a complete form of calculating the resulting state with depolarising channels, is of utmost

importance in calculating the fidelity of the state. This was achieved in Chapter 3, taking into account

the individual fidelities of each quantum link of a network and the distribution schemes. Moreover, we

introduced from the literature a few quantum network metrics capable of modelling the entanglement

distribution in the case of bipartite, such as communication times, memory decoherence times and the

probability of success. This was extended for the multipartite case also in Chapter 3.

For both distribution schemes, the tree scheme in Section 3.2 and the star scheme in Section 3.3,

we implemented two new different algorithms, targeting the two different problems (shortest-tree and

shortest-star). This algorithms were built on top of the foundations laid by the classical routing theory,

gathering the previously calculated metrics, with their underlying properties, and the distribution schemes

themselves, into a new efficient and adaptable approach on the problem of finding the optimal way of

distributing multipartite entanglement in a quantum network. This was fundamental for us to ensure

that our algorithm for the star scheme provided the optimal solution, which was done in Section 4.3.

While simulating our algorithm on random networks, we stumbled upon a dilemma that foresighted

a new problem to ensure that a quantum network is connected - the scaling problem. This problem rose

from the fact that the fidelity is a parameter with a threshold of functionality. We solved it by distributing

the parameters across the network such that the largest distance in a network remains connected. By

doing this in a statistical manner, it shed some light on the problem of deriving the complexity of our

61

algorithm, which we accomplished by taking into consideration the structure of the algorithm and defining

some quantities that depended on the statistical distribution of the parameters. This resulted in the fact

that this approach on the complexity is broader for other types of parameters and respective distributions.

We presented several results from the simulations, which came in agreement with the calculated values

in Section 4.6, namely with the star algorithm scaling almost linearly (apart from a poly-logarithmic

function) with the number of nodes of the network. In detail, for the case of the ER network, the scaling

was in O
(
N · (1 + η logN)T

)
which is specially important for a network with an increasing number of

nodes. For the case of the SCL network, the scaling was in O
(
N · (

√
N + ηN)T

)
.

While this framework is used to solve the problem taking into account these two distinct distribution

schemes, it is adaptable to new schemes and other parameters capable of characterising the entanglement

distribution, for example the rate of distribution [33].

Some notes on possible paths for future work: the main caveat of this framework is that the properties

necessary for the exactness of the algorithm solutions are not always verified. In some cases of metrics,

while non-isotonic, through some modifications on the algorithms, they can still be implemented and its

exactness proved [62]. This would extent the framework allowing more metrics and distribution schemes

to be analysed.

Although in this project, the effect of the distributions errors that affected the fidelity was only studied

for GHZ states, it would also be important to discuss for other types of states, eventually for W states,

which are known to form, for only three qubits, the only two classes of non-equivalent entanglement.

More than just studying the effect on different groups of entangled states, which could probably be done

by means of quantum operators theory and possible symmetries of the entangled states, the extra step

of considering different models of noise would also be meaningful. This extension comes naturally, given

that considering the same amount of error in bit-flip, phase-flip and bit-phase-flip errors, i.e the standard

depolarisation channel, might not always correspond to the physical reality.

So far, we only investigated a scheme that considered no purification protocols that might happen

in intermediary steps of the distribution protocols, i.e either there was an initial round of purification

which guaranteed high fidelities on the initial states or rounds of purification with multiple copies of

the distributed state through multipartite quantum purification protocols like the ones introduced in

[28–30, 63]. Some distribution schemes present in [54] optimize the distribution schemes for bipartite

entanglement by considering purification happening in intermediary steps. It would be important to

realise the compatibility with this framework for multipartite entanglement distribution. It would also be

interesting to consider the possibility of continuous distribution of entanglement, by continuous generation

of bipartite entanglement in the network which would affect the metrics for the network parameters and

eventually lead to possible optimisations in the distribution scheme.

While bipartite entanglement distribution has been around for quite sometime now, as applications

that rely on multipartite entanglement appear, multipartite entanglement distribution is gradually start-

ing to become not only a side-note of entanglement distribution literature, but a crucial area of investi-

gation. With this project, I hope to have demonstrated that optimally distributing these types of states

in a network merges routing problems with distributions schemes.

62

Bibliography

[1] C. H. Bennett and G. Brassard, Quantum cryptography: Public key distribution and coin

tossing, Theoretical Computer Science, 560 (2014), pp. 7–11.

[2] A. I. Nurhadi and N. R. Syambas, Quantum Key Distribution (QKD) Protocols: A Survey,

Proceeding of 2018 4th International Conference on Wireless and Telematics, ICWT 2018, (2018),

pp. 18–22.

[3] A. Broadbent, J. Fitzsimons, and E. Kashefi, Universal blind quantum computation, Proceed-

ings - Annual IEEE Symposium on Foundations of Computer Science, FOCS, (2009), pp. 517–526.

[4] D. Gottesman, T. Jennewein, and S. Croke, Longer-baseline telescopes using quantum re-

peaters, Physical Review Letters, 109 (2012), pp. 1–5.

[5] P. Kómár, E. M. Kessler, M. Bishof, L. Jiang, A. S. Sørensen, J. Ye, and M. D. Lukin,

A quantum network of clocks, Nature Physics, 10 (2014), pp. 582–587.

[6] S. Wehner, D. Elkouss, and R. Hanson, Quantum internet: A vision for the road ahead,

Science, 362 (2018).

[7] A. Pirker and W. Dür, A quantum network stack and protocols for reliable entanglement-based

networks, New Journal of Physics, 21 (2018).

[8] C. Ren and H. F. Hofmann, Clock synchronization using maximal multipartite entanglement,

Physical Review A - Atomic, Molecular, and Optical Physics, 86 (2012), pp. 1–4.

[9] E. T. Khabiboulline, J. Borregaard, K. De Greve, and M. D. Lukin, Quantum-assisted

telescope arrays, Physical Review A, 100 (2019), pp. 1–10.

[10] Z. Eldredge, M. Foss-Feig, J. A. Gross, S. L. Rolston, and A. V. Gorshkov, Optimal and

secure measurement protocols for quantum sensor networks, Physical Review A, 97 (2018), p. 042337.

[11] T. Qian, J. Bringewatt, I. Boettcher, P. Bienias, and A. V. Gorshkov, Optimal Mea-

surement of Field Properties with Quantum Sensor Networks, (2020), pp. 1–6.

[12] M. Hillery, V. Bužek, and A. Berthiaume, Quantum secret sharing, Physical Review A -

Atomic, Molecular, and Optical Physics, 59 (1999), pp. 1829–1834.

63

[13] C. Zhu, F. Xu, and C. Pei, W-state Analyzer and Multi-party Measurement-device-independent

Quantum Key Distribution, Scientific Reports, 5 (2015), pp. 1–10.

[14] G. Murta, F. Grasselli, H. Kampermann, and D. Bruß, Quantum Conference Key Agree-

ment: A Review, 2 (2020), pp. 1–15.

[15] J. Fitzsimons, Private quantum computation: An introduction to blind quantum computing and

related protocols, npj Quantum Information, 3 (2016).

[16] R. Raussendorf and H. J. Briegel, A one-way quantum computer, Physical Review Letters, 86

(2001), pp. 5188–5191.

[17] J. Siewert and C. Eltschka, Quantifying tripartite entanglement of three-Qubit generalized

Werner States, Physical Review Letters, 108 (2012), pp. 1–5.

[18] W. Munro, K. Azuma, K. Tamaki, and K. Nemoto, Inside quantum repeaters, IEEE Journal

of Selected Topics in Quantum Electronics, 21 (2015), pp. 1–13.

[19] M. Caleffi, Optimal Routing for Quantum Networks, IEEE Access, 5 (2017), pp. 22299–22312.

[20] K. Chakraborty, F. Rozpedek, A. Dahlberg, and S. Wehner, Distributed Routing in a

Quantum Internet, (2019).

[21] M. Pant, H. Krovi, D. Towsley, L. Tassiulas, L. Jiang, P. Basu, D. Englund, and

S. Guha, Routing entanglement in the quantum internet, npj Quantum Information, 5 (2019).

[22] S. Shi and C. Qian, Modeling and Designing Routing Protocols in Quantum Networks, (2019).

[23] C. Li, T. Li, Y.-X. Liu, and P. Cappellaro, Effective routing design for remote entanglement

generation on quantum networks, (2020).

[24] J. L. Sobrinho, An algebraic theory of dynamic network routing, IEEE/ACM Transactions on

Networking, 13 (2005), pp. 1160–1173.

[25] C. Meignant, D. Markham, and F. Grosshans, Distributing Graph States Over Arbitrary

Quantum Networks, Physical Review A - Atomic, Molecular, and Optical Physics, 052333 (2018),

pp. 1–6.

[26] J. Wallnöfer, A. Pirker, M. Zwerger, and W. Dür, Multipartite state generation in quantum

networks with optimal scaling, Scientific Reports, 9 (2019), pp. 1–18.

[27] F. Hahn, A. Pappa, and J. Eisert, Quantum network routing and local complementation, npj

Quantum Information, 5 (2019), p. 76.

[28] W. Dür, H. Aschauer, and H. J. Briegel, Multiparticle Entanglement Purification for Graph

States, Physical Review Letters, 91 (2003), pp. 3–6.

64

[29] H. Aschauer, W. Dür, and H. J. Briegel, Multiparticle entanglement purification for two-

colorable graph states, Physical Review A - Atomic, Molecular, and Optical Physics, 71 (2005),

pp. 1–20.

[30] C. Kruszynska, A. Miyake, H. J. Briegel, and W. Dür, Entanglement purification protocols

for all graph states, Physical Review A - Atomic, Molecular, and Optical Physics, 74 (2006), pp. 1–9.

[31] S. Brand, T. Coopmans, and D. Elkouss, Efficient computation of the waiting time and fidelity

in quantum repeater chains, IEEE Journal on Selected Areas in Communications, 38 (2020), pp. 619–

639.

[32] W. Dai, T. Peng, and M. Z. Win, Optimal Remote Entanglement Distribution, IEEE Journal on

Selected Areas in Communications, 38 (2020), pp. 540–556.

[33] L. Bugalho, B. Coutinho, and Y. Omar, Distribution Multipartite Entanglement over Noisy

Quantum Networks, in preparation, (2021).

[34] M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information: 10th An-

niversary Edition, Cambridge University Press, New York, NY, USA, 10th ed., 2011.

[35] C. H. Bennett, G. Brassard, S. Popescu, B. Schumacher, J. A. Smolin, and W. K.

Wootters, Purification of noisy entanglement and faithful teleportation via noisy channels, Phys-

ical Review Letters, 76 (1996), pp. 722–725.

[36] W. Dur, G. Vidal, and J. I. Cirac, Three qubits can be entangled in two inequivalent ways,

Physical Review A - Atomic, Molecular, and Optical Physics, 62 (2000), pp. 062314–062311.

[37] C. H. Bennett, S. Popescu, D. Rohrlich, J. A. Smolin, and A. V. Thapliyal, Exact and

asymptotic measures of multipartite pure-state entanglement, Physical Review A - Atomic, Molecular,

and Optical Physics, 63 (2001), pp. 012307–012301.

[38] S. B. Zheng, Splitting quantum information via W states, Physical Review A - Atomic, Molecular,

and Optical Physics, 74 (2006), pp. 2–5.

[39] M. Hein, W. Dür, J. Eisert, R. Raussendorf, M. Van Den Nest, and H. J. Briegel,

Entanglement in graph states and its applications, 162 (2006), pp. 115–218.

[40] A. Raina, P. J. Nadkarni, and S. S. Garani, Recovery of quantum information from a node

failure in a graph, Quantum Information Processing, 19 (2020).

[41] A.-L. Barabási and M. Pósfai, Network science, Cambridge University Press, Cambridge, 2016.

[42] W.-H. Steeb and Y. Hardy, Quantum Channels, Problems and Solutions in Quantum Computing

and Quantum Information, (2018), pp. 369–384.

[43] L. M. Duan, M. D. Lukin, J. I. Cirac, and P. Zoller, Long-distance quantum communication

with atomic ensembles and linear optics, Nature, 414 (2001), pp. 413–418.

65

[44] S. N. Dorogovtsev, A. V. Goltsev, and J. F. Mendes, Critical phenomena in complex net-

works, Reviews of Modern Physics, 80 (2008), pp. 1275–1335.

[45] J. L. Sobrinho, Network Routing with Path Vector Protocols: Theory and Applications, in Com-

puter Communication Review, vol. 33, 2003, pp. 49–60.

[46] J. L. Sobrinho, Fundamental Differences Among Vectoring Routing Protocols on Non-Isotonic

Metrics, IEEE Networking Letters, 1 (2019), pp. 95–98.

[47] Y. Yaling and W. Jun, Design guidelines for routing metrics in multihop wireless networks,

Proceedings - IEEE INFOCOM, (2008), pp. 2288–2296.

[48] E. Q. V. Martins, On a multicriteria shortest path problem, European Journal of Operational

Research, 16 (1984), pp. 236–245.

[49] P. Vincke, Problèmes multicriteres., Cah. Cent. Étud. Rech. Opér., 16 (1974), pp. 425–439.

[50] Hansen P., Bicriterion Path Problems, Multiple Criteria Decision Making Theory and Application.

Lecture Notes in Economics and Mathematical Systems, 177 (1980).

[51] S. Demeyer, J. Goedgebeur, P. Audenaert, M. Pickavet, and P. Demeester, Speeding

up Martins’ algorithm for multiple objective shortest path problems, 4or, 11 (2013), pp. 323–348.

[52] X. Gandibleux, F. Beugnies, and S. Randriamasy, Martins’ algorithm revisited for multi-

objective shortest path problems with a MaxMin cost function, 4or, 4 (2006), pp. 47–59.

[53] K. Chakraborty, D. Elkouss, B. Rijsman, and S. Wehner, Entanglement Distribution in a

Quantum Network, a Multi-Commodity Flow-Based Approach, (2020), pp. 1–18.

[54] K. Goodenough, D. Elkouss, and S. Wehner, Optimising repeater schemes for the quantum

internet, (2020), pp. 1–39.

[55] V. V. Kuzmin, D. V. Vasilyev, N. Sangouard, W. Dür, and C. A. Muschik, Scalable

repeater architectures for multi-party states, npj Quantum Information, 5 (2019), pp. 1–6.

[56] X. Wang, Exact algorithms for Steiner tree problem, 2008.

[57] G. Robins and A. Zelikovsky, Tighter bounds for graph steiner tree approximation, 19 (2005),

pp. 122–134.

[58] C. P. Dettmann and O. Georgiou, Product of n independent uniform random variables, Statis-

tics and Probability Letters, 79 (2009), pp. 2501–2503.

[59] P. Leesutthipornchai, C. Charnsripinyo, and N. Wattanapongsakorn, Solving multi-

objective routing and wavelength assignment in WDM network using hybrid evolutionary computation

approach, Computer Communications, 33 (2010), pp. 2246–2259.

66

[60] H. Yetgin, K. T. K. Cheung, and L. Hanzo, Multi-objective routing optimization using evo-

lutionary algorithms, IEEE Wireless Communications and Networking Conference, WCNC, (2012),

pp. 3030–3034.

[61] N. Magaia, N. Horta, R. Neves, P. R. Pereira, and M. Correia, A multi-objective routing

algorithm for Wireless Multimedia Sensor Networks, Applied Soft Computing Journal, 30 (2015),

pp. 104–112.

[62] M. Saad, Non-isotonic routing metrics solvable to optimality via shortest path, Computer Networks,

145 (2018), pp. 89–95.

[63] W. Dür and H. J. Briegel, Entanglement purification and quantum error correction, Reports on

Progress in Physics, 70 (2007), pp. 1381–1424.

67

68

Appendix A

Calculations of Fidelity

For these calculations, using the second description of the depolarising channel expressed in Equation

A.1 will prove to be more useful:

Di(ρ, F) =
1 + 2F

3
ρ+

2(1− F)

3
Λi(ŶiρŶi) (A.1)

where Λi stands to the partial transposition on qubit i.

Let us first check what is the action of the depolarising over each entry of the matrix |l〉 〈m| ≡

|l1...ln〉 〈m1...mn|:

Di(|l〉 〈m| , F) = Di(|l1...li...ln〉 〈m1...mi...mn| , F)

=
1 + 2F

3
|l〉 〈m|+ 2(1− F)

3
Λi(Ŷi |l1...li...ln〉 〈m1...mi...mn| Ŷi)

=
1 + 2F

3
|l〉 〈m|+ 2(1− F)

3
Λi

(
(−1)1+li+mi |l1...li...ln〉 〈m1...mi...mn|

)
=

1 + 2F

3
|l〉 〈m|+ 2(1− F)

3
(−1)1+li+mi |l1...mi...ln〉 〈m1...li...mn|

(A.2)

where Ŷ |0〉 = −i |1〉, Ŷ |1〉 = i |0〉. Now, considering any state |ψ〉 =
∑2n−1
m=0 αm |m〉 with density

matrix given by |ψ〉 〈ψ|:

Di(|ψ〉 〈ψ| , F) =

2n−1∑
l,m=0

α∗l αmDi(|l1...li...ln〉 〈m1...mi...mn| , F)

=

2n−1∑
l,m=0

α∗l αm

[1 + 2F

3
|l〉 〈m|+ 2(1− F)

3
(−1)1+li+mi |l1...mi...ln〉 〈m1...li...mn|

]

=
1 + 2F

3
|ψ〉 〈ψ|+

2n−1∑
l,m=0

α∗l αm
2(1− F)

3
(−1)1+li+mi |l1...mi...ln〉 〈m1...li...mn|

(A.3)

Then, the fidelity can be calculated as follows:

69

〈ψ|Di(|ψ〉 〈ψ| , F) |ψ〉 =
1 + 2F

3
+ 〈ψ|

[2n−1∑
l,m=0

α∗l αm
2(1− F)

3
(−1)1+li+mi |l1...mi...ln〉 〈m1...li...mn|

]
|ψ〉

=
1 + 2F

3
+

2(1− F)

3

2n−1∑
l′,m′=0

2n−1∑
l,m=0

α∗l′α
∗
l αmαm′ (−1)1+li+mi ·

· 〈l′1...l′i...l′n|l1...mi...ln〉 〈m1...li...mn|m′1...m′i...m′n〉

=
1 + 2F

3
+

2(1− F)

3

2n−1∑
l′,m′=0

2n−1∑
l,m=0

α∗l′α
∗
l αmαm′ (−1)1+li+mi · δl′1,l1 ...δl′i,mi ...δl′n,ln ·

δm′1,m1
...δm′i,li

...δm′n,mn
(A.4)

From this formula, we verify that the fidelity of the state will depend on the state in which the

depolarising channel acts. Another important question would be to calculate the formula for when a

subset of the qubits are affected by one depolarising channel. Denoting A = {a1, a2, ..., am} as the set of

qubits with dimension m = |A| ≤ n, where the depolarising channels will act, we can calculate the final

state from:

DA(|ψ〉 〈ψ| , {Fi}i∈A) =

2n−1∑
l,m=0

α∗l αmDA(|l1...li...ln〉 〈m1...mi...mn| , {Fi}i∈A)

= DA\a1

(2n−1∑
l,m=0

α∗l αm

[1 + 2Fa1
3

|l〉 〈m|+

2(1− Fa1)

3
(−1)1+la1+ma1 |l1...ma1 ...ln〉 〈m1...la1 ...mn|

])
= ...

(A.5)

To simplify the calculations, let us separate the diagonal elements form the off-diagonal elements and

derive general expressions only for diagonal, since the off-diagonal in the GHZ case will be simpler to

calculate due to invariances under the depolarising channel. The diagonal terms of any state become the

following:

DA (|l1...ln〉 〈l1...ln| , {Fi}i∈A) = DA\a1

([1 + 2Fa1
3

|l1...ln〉 〈l1...ln|+
2(1− Fa1)

3
|l1...la1 ...ln〉 〈l1...la1 ...ln|

])
= DA\{a1,a2}

([1 + 2Fa1
3

· 1 + 2Fa2
3

|l1...ln〉 〈l1...ln|+
2(1− Fa1)

3
· 1 + 2Fa2

3
|l1...la1 ...ln〉 〈l1...la1 ...ln|

]
+

+
1 + 2Fa1

3
· 2(1− Fa2)

3
|l1...la2 ...ln〉 〈l1...la2 ...ln|+

2(1− Fa1)

3
· 2(1− Fa2)

3
|l1...la1 ...la2 ...ln〉 〈l1...la1 ...la2 ...ln|

)
(...)

=

2m−1∑
k=0

m∏
i=1

[1 + 2Fai
3

]ki
·
[2(1− Fai)

3

]ki
σA
k (|l1...ln〉 〈l1...ln|)

(A.6)

Considering the binary decomposition of k = k1k2...km, then σA
k (ρ) = X̂k1

a1⊗...⊗X̂
km
am ρ X̂k1

a1⊗...⊗X̂
km
am .

A.1 Distributing GHZ states using Star-Expansion Protocol

As seen in Section 3.2, the star-expansion protocol is identical to successive merges of GHZ states, keeping

every Steiner node until the end when they are finally measured. Considering the merge of a m-GHZ

70

state distributed amongst the set of qubits A = {a1, a2, ..., am} with an n-GHZ state distributed amongst

the set of qubits B = {b1, b2, ..., bn} through the qubit i = am of the first state with qubit j = b1 from

the second state, identically to Figure 3.4, the initial state is the following:

DA\a1(|GHZm〉 〈GHZm| , {Fi}i∈A\a1)⊗DB\b1(|GHZn〉 〈GHZn| , {Fi}i∈B\b1) (A.7)

After performing the necessary operations to merge the different GHZ states, the final state is also a

GHZ state of n+m− 1 = ñ qubits with the following form:

2(ñ−1)−1∑
k=0

m∏
i=2

[1 + 2Fai
3

]kai · [2(1− Fai)
3

]kai n∏
i=2

[1 + 2Fbi
3

]kbi⊕kam · [2(1− Fbi)
3

]kbi⊕kam
σÑ
k (|0〉⊗ñ 〈0|⊗ñ)+

+

2(ñ−1)−1∑
k=0

m∏
i=2

[1 + 2Fai
3

]kai · [2(1− Fai)
3

]kai n∏
i=2

[1 + 2Fbi
3

]kbi⊕kam · [2(1− Fbi)
3

]kbi⊕kam
σÑ
k (|1〉⊗ñ 〈1|⊗ñ)+

+

m∏
i=2

[4Fai − 1

3

]
·
n∏
i=2

[4Fbi − 1

3

]
|0〉⊗ñ 〈1|⊗ñ +

m∏
i=2

[4Fai − 1

3

]
·
n∏
i=2

[4Fbi − 1

3

]
|1〉⊗ñ 〈0|⊗ñ

(A.8)

Where Ñ = a1, a2, ..., am−1, b1, b2,, bn are the ñ qubits indices, k = ka2ka3 ...kamkb2kb3 ...kbn is the

binary decomposition of k where the indexes depend on how the qubits are ordered, i.e the correspondence

between ai or bi and the qubit number and ⊕ in here stands for the mod(2) sum. To gain more intuition

over what is happening in Equation A.8, some examples of merges are presented in Table A.1. The

difference between this state and the regular ñ-GHZ state with ñ − 1 depolarising channels is, because

the controlled-Z gate does not commute with the action of the depolarising channel, that the order in

the middle terms of the depolarised state changes. The expected order should be the ordered binary

decomposition of the numbers between 0 and 2ñ−1, but instead (which can be seen from the ⊕kam term

in A.8), a controlled flip appears between the qubit involved in the controlled-Z operation and every qubit

of the n-GHZ state. Moreover, when merging another GHZ state, the effect is cumulative.

Using this approach of merging successive GHZ states, one thing that cannot be forgotten is the

Steiner nodes measurements, which we have been postponing for the end. A measurement in this case

must always be accompanied by a signal of the outcome to perform a correction and retrieve the same

GHZ form as before. In this case, the proper measurement is a X-measurement. If the measured qubit

is on a node involved in the merge, i.e a Steiner node, then its measurement will result in moving the

depolarising channel from that node to the center node plus some qubit SWAP operations which do not

actually affect the fidelity of the final state since the GHZ state is invariant under SWAP operations.

The other case in which the measured qubit is on a node not involved in the merge implies that such

node is actually a leaf of the tree. This implies that, if the algebra for trees is monotone, that such leaf is

necessarily a terminal and therefore should not be measured, leaving us with a final state in the following

form (minus the SWAP operations to correct the non-GHZ components):

DT\t0

(
D

#(S)
t0

(
|GHZ〉 〈GHZ| , {Fsi}si∈S

)
, {Fti}ti∈T\t0

)
(A.9)

Since the analysis of the effect of depolarising channels on all qubits of a GHZ state is made in the

next Section A.2, let’s stick to the derivation of the final state after applying several depolarising channels

71

a2 b2 b3
0 0 0
0 0 1
0 1 0
0 1 1
1 1 1
1 1 0
1 0 1
1 0 0

Merging a φ+ pair with a 3-GHZ into a
4-GHZ

a2 a3 b2
0 0 0
0 0 1
0 1 1
0 1 0
1 0 0
1 0 1
1 1 1
1 1 0

Merging a 3-GHZ with a φ+ pair into a
4-GHZ

a2 a3 b2 b3
0 0 0 0
0 0 0 1
0 0 1 0
0 0 1 1
0 1 1 1
0 1 1 0
0 1 0 1
0 1 0 0
1 0 0 0
1 0 0 1
1 0 1 0
1 0 1 1
1 1 1 1
1 1 1 0
1 1 0 1
1 1 0 0

Merging a 3-GHZ with a 3-GHZ into a
5-GHZ

Table A.1: Examples of possible merges considering that the merge always happens at the
last qubit of the first state am. The correct way to read this table is the following: each
line corresponds to the diagonal entry of the density matrix of the state after the merge and
every time a 0 appears it corresponds to the term 1+2FI

3 and if a 1 appear, the corresponding

term is 2(1−Fi)
3 . In the end, in each line the terms multiply and gives the correspondent

value for each matrix entry.

72

to the same qubit of an GHZ state. Starting with the diagonal entries of the matrix |0〉⊗m 〈0|⊗m and

|1〉⊗m 〈1|⊗m and using the second description of the depolarising channel (Equation A.1), from Equation

A.2 we get that:

Λi(Ŷi |l1...li...ln〉 〈l1...li...ln| Ŷi) = Ŷi |l1...li...ln〉 〈l1...li...ln| Ŷi

= (−1)1+li+li |l1...li...ln〉 〈l1...li...ln|

= |l1...li...ln〉 〈l1...li...ln|

(A.10)

And therefore, n applications of this operator over the same state results in:

Ŷi
n
|l1...li...ln〉 〈l1...li...ln| Ŷi

n
=

|l1...li...ln〉 〈l1...li...ln| if n is even

|l1...li...ln〉 〈l1...li...ln| if n is odd

(A.11)

From this we can verify that the final form will certainly depend on whether the number of depolarising

channels is even or odd. To simplify notation consider the following:

n∏
i=1

(ai + bi) = a1a2...an + b1a2a3...an + b1b2a3...an + ...+ b1b2...bn

=
∑
Zk

(∏
i∈Zk

ai
∏

j∈N\Zk

bj

)
+
∑
Zk

(∏
i∈Zk

ai
∏

j∈N\Zk

bj

)

= E(a,b, n) +O(a,b, n)

(A.12)

Where Zk are the subsets of N = {1, 2, ..., n} with even cardinality and Zk are the ones with odd

cardinality, e.g if N = {1, 2, 3} then Z = {{}, {1, 2}, {1, 3}, {2, 3}} and Z = {{1}, {2}, {3}, {1, 2, 3}}. In

the end of Equation A.12 a new notation is introduced for the two different sums of even cardinality

E(a,b, n) and of odd cardinality O(a,b, n) where a and b are the vectors comprised of the ai and bi

terms, respectively.

Using this notation, taking into account the results obtained in Equations ??, we can derive the final

form of the n-GHZ state after applying m depolarising channels over one qubit (w.l.o.g consider this

qubit to be the first one):

ρ̃→ E(F,m) |0〉⊗n 〈0|⊗n +O(F,m) |1〉 〈1| ⊗ |0〉⊗n−1 〈0|⊗n−1
+

m∏
i=1

4Fi − 1

3

[
|0〉⊗n 〈1|⊗n + |1〉⊗n 〈0|⊗n

]
+ E(F,m) |1〉⊗n 〈1|⊗n +O(F,m) |0〉 〈0| ⊗ |1〉⊗n−1 〈1|⊗n−1

(A.13)

Where E(F,m) = E(2(1−F)
3 , 1+2F

3 ,m) and O(F,m) = O(2(1−F)
3 , 1+2F

3 ,m), where the notation f(F) =

{f(F1), ..., f(Fm)} was used. Using all of this, the final fidelity of the GHZ state can be derived after

applying the depolarising channels described in Equation A.9:

f =
E(FS,#S) ·

∏
Fti∈FT

1+2Fti
3 +O(FS,#S) ·

∏
Fti∈FT

2(1−Fti)
3 +

∏
Fi∈FT∪FS

4Fi−1
3

2
(A.14)

Where FS = {Fsi}si∈S and FT = {Fti}ti∈T\t0 .

73

A.2 Distributing GHZ states using Scheme for Distributing Ar-

bitrary States

As introduced in Section 2.1.4, Equation 2.20, the generalisation the GHZ state for an arbitrary m-qubit

state is:

|GHZm〉 =
|0〉⊗m + |1〉⊗m√

2
(A.15)

The corresponding density matrix only has four entries different than zero, namely:

|GHZm〉 〈GHZm| =
|0〉⊗m 〈0|⊗m + |0〉⊗m 〈1|⊗m + |1〉⊗m 〈0|⊗m + |1〉⊗m 〈1|⊗m

2
(A.16)

For applying a depolarising in each qubit of the m-qubit GHZ state, let us separate as before, the

diagonal from the off-diagonal terms. The diagonal terms become:

DM(|0〉⊗m 〈0|⊗m , {Fi}i∈M) =

2m−1∑
k=0

m∏
i=1

[1 + 2Fi
3

]ki
·
[2(1− Fi)

3

]ki
σM
k (|0〉⊗m 〈0|⊗m)

DM(|1〉⊗m 〈1|⊗m , {Fi}i∈M) =

2m−1∑
k=0

m∏
i=1

[1 + 2Fi
3

]ki
·
[2(1− Fi)

3

]ki
σM
k (|1〉⊗m 〈1|⊗m)

(A.17)

Where M = 1, 2,,m are the m qubits indices. The off-diagonal terms of this state are fairly simple

to calculate since they are an eigenvector of Λi(ŶiρŶ
†
i), ∀i ∈ M. The correspondent eigenvalue is −1,

and therefore:

DM(|0〉⊗m 〈1|⊗m , {Fi}i∈M) =

m∏
i=1

[4Fi − 1

3

]
|0〉⊗m 〈1|⊗m

DM(|1〉⊗m 〈0|⊗m , {Fi}i∈M) =

m∏
i=1

[4Fi − 1

3

]
|1〉⊗m 〈0|⊗m

(A.18)

Calculating the fidelity is then simple. From the definitions of measure of fidelity introduced in Section

2.1.3, we use f = 〈ψ| ρ |ψ〉. The final expression then becomes:

〈GHZm|DM(|GHZm〉 〈GHZm| , {Fi}i∈M) |GHZm〉 =

∏m
i=1

1+2Fi
3 +

∏m
i=1

2(1−Fi)
3 +

∏m
i=1

4Fi−1
3

2

=

∏m
i=1

1+γi
2 +

∏m
i=1

1−γi
2 +

∏m
i=1 γi

2
(A.19)

In Figure A.1 the form of these completely depolarised states is presented in a manner that is visually

explicit, ranging from only two qubits to four qubits.

74

(a) Usual entangled pair |φ+〉 with no depolarising chan-
nel.

(b) Usual entangled pair |φ+〉 with depolarising channel
- F = 0.9.

(c) Usual GHZ state with 3 qubits |GHZ3〉 with no de-
polarising channels.

(d) Usual GHZ state with 3 qubits |GHZ3〉 with a depo-
larising channel in each qubit - F1 = 0.95;F2 = 0.9;F3 =
0.99

(e) Usual GHZ state with 4 qubits |GHZ4〉 with no de-
polarising channels.

(f) Usual GHZ state with 4 qubits |GHZ4〉 with a depo-
larising channel in each qubit - F1 = 0.95;F2 = 0.9;F3 =
0.99;F4 = 0.98

Figure A.1: Matrix entries plot for the the GHZ states with two (equivalent to a |φ+〉
pair) and three qubits with and without depolarising channels to illustrate the form of a
completely depolarised GHZ state.

75

76

Appendix B

Monotonicity and Isotonicity Proofs

B.1 Fidelity from Entanglement Swapping Metric

The metric for the fidelity in the γs change of variables is given by the following algebra: γ :
(

[1/3; 1) ∪

{0},≥, (1/3; 1), (0; 1), 0,⊕γ , g
)

where ⊕γ is the following binary operation:

⊕γ : (0; 1)× [1/3; 1) −→ (0; 1)

(γi:j , γj:k) 7−→ γi:j · γj:k
(B.1)

And with g(·) being the following function:

g(γ) =

γ γ ≥ 1/3

0 γ < 1/3

(B.2)

Monotonicity

This metric is essentially a multiplication plus a constraint if the value of γ falls below a certain threshold.

Using multiplication properties:

γi:j · γj:k ≤ γi:j ∀γi:j ∈ [1/3; 1) ∪ {0},∀γj:k ∈ [1/3; 1)

If after multiplying γj:k the γ value drops below 1/3, then the ordering still maintains. If the value of

γi:j is already below 1/3, then both paths i : j and i : k = i : j ⊕ j : k are equally impossible, both have

the special signature weight, which is 0 in this case, and the ordering still maintains since 0 ≤ 0.

Isotonicity

The usual multiplication is trivially an isotonic metric, which can be seen given two different γ values

γ
(1)
i:j , γ

(2)
i:j ∈ [1/3; 1[∪{0} such that γ

(1)
i:j ≥ γ

(2)
i:j :

γ
(1)
i:j ≥ γ

(2)
i:j ⇒

⇒ γ
(1)
i:j · γj:k ≥ γ

(2)
i:j · γj:k ∀γj:k ∈ [1/3; 1)

77

The case where one or both paths fall below the threshold, it is easy to check that the order maintains,

again because a ≥ 0 , ∀a ∈ [1/3, 1) and 0 ≥ 0 respectively.

B.2 Waiting time Metric

The metric for the waiting time is given by the following algebra: twait :
(

R+∪∞,≤,R+,R+,∞,⊕t, idR+

)
where ⊕t is the following binary operation:

⊕t : R+ × R+ −→ R+

(ti:j , Lj:k/c) 7−→ ti:j + Lj:k/c
(B.3)

Monotonicity

Proving the monotonicity is fairly straightforward since the metric is essentially an addition:

ti:j + Lj:k/c ≥ ti:j ∀ti:j ∈ R+,∀Lj:k/c ∈ R+

Isotonicity

Again, since the metric is essentially an addition, ∀t(1)
i:j , t

(2)
i:j ∈ R+ such that t

(1)
i:j ≤ t

(2)
i:j :

t
(1)
i:j ≤ t

(2)
i:j ⇒

⇒ t
(1)
i:j + Lj:k/c ≤ t

(2)
i:j + Lj:k/c ∀Lj:k/c ∈ R+

B.3 Memory Decoherence Time Metric

The metric for the memory decoherence time is given by the following algebra: σ :
(

R+ ∪ ∞,≥

,R+,R+,∞,⊕σ, idR+

)
where ⊕σ is the following binary operation:

⊕σ : R+ × R+ −→ R+

(τi:j , τj:k) 7−→
[1

τi:j
+

1

τj:k

]−1 (B.4)

Monotonicity

Proving the monotonicity is more complicated than a simple addition, but easily verifiable:[1

τi:j
+

1

τj:k

]−1

≤
[1

τi:j

]−1

= τi:j ∀τj:k ∈ R+

Isotonicity

Proving the isotonicity ∀τ (1)
i:j , τ

(2)
i:j ∈ R+ such that τ

(1)
i:j ≥ τ

(2)
i:j :

78

τ
(1)
i:j ≥ τ

(2)
i:j ⇒

⇒ 1

τ
(1)
i:j

≤ 1

τ
(2)
i:j

⇒

⇒ 1

τ
(1)
i:j

+
1

τj:k
≤ 1

τ
(2)
i:j

+
1

τj:k
⇒

⇒
[1

τ
(1)
i:j

+
1

τj:k

]−1

≥
[1

τ
(2)
i:j

+
1

τj:k

]−1

∀τj:k ∈ R+

B.4 Probability of Success Metric

Let us first prove the results for the metric considering that t = 1. This associated algebra is psuc :(
[0; 1),≥, (0; 1)× (0; 1), [0; 1), 0,⊕p, id[0;1]

)
where ⊕p is the following binary operation:

⊕p : [0; 1)× (0; 1)2 −→ [0; 1)

(pi:j , (pj:k, kj)) 7−→ pi:j · pj:k · kj
(B.5)

Monotonicity

Similarly to the fidelity metric, the operation performed is the multiplication which is trivially monotonic,

even though that this time, two different factors describe each edge.

pi:j · pj:k · kj ≤ pi:j ∀pj:k, kj ∈ (0, 1)

Isotonicity

Proving the isotonicity only requires multiplying both sides of the inequality by the value of the new

edge. Given two different p
(1)
i:j , p

(2)
i:j ∈ [0; 1[such that p

(1)
i:j ≥ p

(2)
i:j :

p
(1)
i:j ≥ p

(2)
i:j ⇒

⇒ p
(1)
i:j · pj:k · kj ≥ p

(2)
i:j · pj:k · kj ∀pj:k, kj ∈ (0; 1)

B.5 Fidelity Metric for Distributing Arbitrary States

Considering the algebra for trees fGHZ :
(

[1/2; 1)∪{0},≥, (1/2; 1), (0; 1)3, 0,⊕GHZ , h
)

where ⊕GHZ is the

following binary operation:

⊕GHZ : (0; 1)3 × (1/2; 1) −→ (0; 1)3

({a, b, c}, fi:j) 7−→ {a ·
1 + 2fi:j

3
, b · 2(1− fi:j)

3
, c · 4fi:j − 1

3
}

(B.6)

And h(·) is the following function:

h({a, b, c}) =


a+b+c

2 , if a+b+c
2 ≥ 1/2

0 , if a+b+c
2 < 1/2

(B.7)

79

Alternatively, to simplify the transition from creating paths and creating starts, the algebra can be

transformed to take in γ values and output values for the fidelity of the state. This is done from the

following equivalence:

1 + 2fi:j
3

=
1 + γi:j

2
2(1− fi:j)

3
=

1− γi:j
2

4fi:j − 1

3
= γi:j

Which results in the following algebra fγGHZ :
(

[1/2; 1) ∪ {0},≥, (1/3; 1), (0; 1)3, 0,⊕γGHZ , h
)

where

⊕γGHZ is given by:

⊕GHZ : (0; 1)3 × (1/3; 1) −→ (0; 1)3

({a, b, c}, γ̃) 7−→ {a · 1 + γ̃

2
, b · 1− γ̃

2
, c · γ̃}

(B.8)

Monotonicity

Proving the monotonicity of the fidelity metric is simple. For simplifications of the proofs consider the

3-tupple {
∏
i

1+γi
2 ,

∏
i

1−γi
2 ,

∏
i γi} correspondent to the values of {a, b, c}. Every term of the 3-tupple is

itself monotonic, since for every star of p paths:

a =
∏
i∈P

1 + γi
2
≥
∏
i∈P

1 + γi
2
· 1 + γ̃

2
,∀γ̃ ∈ [1/3, 1]

b =
∏
i∈P

1− γi
2
≥
∏
i∈P

1 + γi
2
· 1− γ̃

2
,∀γ̃ ∈ [1/3, 1]

c =
∏
i∈P

γi ≥
∏
i∈P

γi · γ̃,∀γ̃ ∈ [1/3, 1]

(B.9)

This implies that:

a+ b+ c ≥ a · 1 + γ̃

2
+ b · 1− γ̃

2
+ c · γ̃ ∀γ̃ ∈ (1/3; 1) (B.10)

Isotonicity

Every term of the 3-tupple is trivially isotonic, however, the sum is not isotonic. This is something

common to happen, when we have metrics that are sums or multiplications of two or more individu-

ally isotonic metrics, especially when the addition of one path is not identical in form for each of the

individually isotonic metrics, i.e is not separable for the final sum or multiplication.

Considering the following inequality (in which we removed the 1/2 factor, even though the results are

the same):

a+ b+ c =
∏
i∈P1

1 + γi
2

+
∏
i∈P1

1− γi
2

+
∏
i∈P1

γi ≥
∏
i∈P2

1 + γi
2

+
∏
i∈P2

1− γi
2

+
∏
i∈P2

γi = a′ + b′ + c′ (B.11)

After extending the star with another path, the inequality to verify becomes:

a · 1 + γ̃

2
+ b · 1− γ̃

2
+ c · γ̃ ≥ a′ · 1 + γ̃

2
+ b′ · 1− γ̃

2
+ c′ · γ̃

80

The lack of isotonicity comes from the fact that even though that the inequality in Equation B.11 is

observed, because every element of the 3-tupple does not evolve in the same way, when adding some paths,

the ordering might be inverted, resulting in non-isotonicity. To prove the non-isotonicity we present one

case in which it is not verified:

P1 = {γ1 = 0.90; γ2 = 0.7408} P2 = {γ3 = 0.7; γ4 = 0.95}

∏
i∈P1

1 + γi
2

+
∏
i∈P1

1− γi
2

+
∏
i∈P1

γi = 1.50008

∏
i∈P2

1 + γi
2

+
∏
i∈P2

1− γi
2

+
∏
i∈P2

γi = 1.4975

This implies that P1 is a better star than P2. However, when adding another path, the ordering might

switch, depending on the γ value of the path, e.g:

γ̃ = 0.6⇒

a ·
1+γ̃

2 + b · 1−γ̃
2 + c · γ̃ = 1.06283

a′ · 1+γ̃
2 + b′ · 1−γ̃

2 + c′ · γ̃ = 1.06275

γ̃ = 0.8⇒

a ·
1+γ̃

2 + b · 1−γ̃
2 + c · γ̃ = 1.27822

a′ · 1+γ̃
2 + b′ · 1−γ̃

2 + c′ · γ̃ = 1.27825

(B.12)

Path-Isotonicity

To prove the path-isotonicity consider two paths with correspondent γ values of γ1, γ2 ∈ [1/3, 1) such that:

γ1 ≥ γ2 (B.13)

The inequality to prove (see Definition 4.1.3) is therefore, ∀{a, b, c} ∈ (0, 1):

a · 1 + γ1

2
+ b · 1− γ1

2
+ c · γ1 ≥ a · 1 + γ2

2
+ b · 1− γ2

2
+ c · γ2

a+ b

2
+
[a− b

2
+ c
]
γ1 ≥

a+ b

2
+
[a− b

2
+ c
]
γ2[a− b

2
+ c
]
γ1 ≥

[a− b
2

+ c
]
γ2

γ1 ≥ γ2

(B.14)

This algebra for trees is path-isotone.

81

82

Appendix C

Complexity Calculations

The main quantity we need to calculate to derive the expression for the fidelity, given the algorithms

structures, is hpaths, which describes the average number of optimal paths across a network. To calculate

this quantity, we will first divide our network in neighbouring regions, i.e number of paths that have

structurally the same distance from the starting node. For each of these paths we analyse the possibility

of adding optimal paths with distance no shorter than the minimum distance between such node and

the center node and adding paths with bigger distances, but that maintain the optimality, i.e they are

functionally better (better fidelity and probability of success).

Denote by zk the neighbours at distance k, Γk being k independent realisations of the γ value, i.e the

distribution of the γ value for a path with k edges and finally, P k being k independent realisations of the

p value. P
(
·
)

stands for the probability of something happening.

Let us begin with the paths at distance d = 1:

z1 · P
(

Γ > γtrunc

)
+ z2 ·

[
P
(

Γ2 > γtrunc ∧ Γ2 > Γ ∧ P 2 < P
)

+ P
(

Γ2 > γtrunc ∧ Γ2 < Γ ∧ P 2 > P
)]

+

+z3 ·
[
P
(

(Γ3 > γtrunc ∧ Γ3 > Γ ∧ P 3 < P
)

+ P
(

Γ3 > γtrunc ∧ Γ3 < Γ ∧ P 3 > P
)]

+

(C.1)

At distance d = 2:

z2 · P
(

Γ2 > γtrunc

)
+ z3 ·

[
P
(

Γ3 > γtrunc ∧ Γ3 > Γ2 ∧ P 3 < P 2
)

+ P
(

Γ3 > γtrunc ∧ Γ3 < Γ2 ∧ P 3 > P 2
)]

+

+z4 ·
[
P
(

(Γ4 > γtrunc ∧ Γ4 > Γ2 ∧ P 4 < P 2
)

+ P
(

Γ4 > γtrunc ∧ Γ4 < Γ2 ∧ P 4 > P 2
)]

+

(C.2)

And so on. At distance d = n:

zn · P
(

Γn > ftrunc

)
+

+∞∑
k=n+1

zk ·
[
P
(

Γk > Γn > γtrunc ∧ P k < Pn
)

+ P
(
γtrunc < Γk < Γn ∧ P k > Pn

)]
(C.3)

Performing the sum of all distances up to a structural maximum distance (e.g the diameter), we can

83

therefore derive an expression for the total number of paths in the network from the starting node:

N · hpaths =

dmax∑
n=1

zn · P
(

Γn > γtrunc

)
+

+

dmax∑
n=1

∞∑
k=n+1

zk ·
[
P
(

Γk > Γn > γtrunc ∧ P k < Pn
)

+ P
(
γtrunc < Γk < Γn ∧ P k > Pn

)]
(C.4)

Since we are interested only in the behaviour of this function, up to a constant, some simplifications

can be made to calculated the average number of paths behaviour. The simplifications are:

1.

P
(

Γk > γtrunc

)
' 1 for k ≤ dmax

Given that from the scaling presented in Section 4.5.1, by guaranteeing functional connectivity up

to the diameter of the network, then the value of P
(

Γk > γtrunc

)
is close to 1 for any k ≤ dmax. It is

easy to understand that if the network parameters were not properly scaled, then this approximation

would become invalid since the values for P
(

Γk > γtrunc

)
would quickly decrease before k = dmax.

2. Let X be a random variable distributed uniformly in [a, 1]. The probability P
(
Xk > Xn

)
is given,

in the limit where a→ 1:

lim
fmin→1

P
(
Xk > Xn

)
=

T (k + n, n)

(k + n+ 1)!
, k > n (C.5)

where, T (n, k) =

k∑
j=0

((−1)j · (k − j)n+1) ·
(
n+ 1

j

)
(C.6)

Figure C.1: Probability k independent realisations of Γ has a γ value bigger than n inde-
pendent realisations of Γ in the limit where γmin → 1

Moreover, if we want to create an upper-bound, it is easy to verify that this probability never

exceeds 1/2 and is only equal if k = n, this is, both distributions are identical.

84

3.

P
(

Γk > Γn > γtrunc ∧ P k < Pn
)

= P
(

Γk > γtrunc

)
· P
(

Γk > Γn ∧ P k < Pn
)

While n ≤ dmax, the same thing does not happen with k which is summed up to infinity. Because

of this, when calculating this terms, two important factors come to play, from the items above,

resulting in a contribution that is proportional to dmax, i.e instead of summing up to infinity, given

that the probabilities will tend quickly to small values, we only need to sum up to β · dmax

4.

P
(

Γk > Γn ∧ P k < Pn
)

= P
(

Γk > Γn
)
· P
(
P k < Pn

)
Since they are unrelated characteristics of the network. Moreover, if P

(
Γk > Γn

)
= p1 and

P
(
P k < Pn

)
= (1− p2), then:

P
(

Γk > Γn
)
· P
(
P k < Pn

)
+ P

(
Γk < Γn

)
· P
(
P k > Pn

)
= p1(1− p2) + (1− p1)p2

= p1 + p2 − 2p1p2

' p1 + p2 = 2p1 = 2p2

This approximation is by excess and gives an interesting insight if we wanted to generalise for an

arbitrary number of objectives, namely, that it would grow at most linearly with the number of

objectives.

Using the before mentioned approximations, we arrive at a final expression for the total number of

optimal paths of:

N · fpaths =

dmax∑
n=1

zn · 1 +

dmax∑
n=1

β·dmax∑
k=n+1

2zk ·
T (k + n, n)

(k + n+ 1)!
(C.7)

(C.8)

where zn is the number of paths beginning in the start node with lenght n. For an Erdós-Renyi, under

the tree approximation, this number is equivalent to the number of nth nearest nieghbours zn = 〈λ〉n.

For the square lattice, this number is more complex to calculate, but is related with the Pascal’s Triangle.

C.1 Erdös-Rényi

Using this consideration, we can now calculate the average number of paths for a properly scaled Erdós-

Renyi network:

dmax =
logN

log 〈λ〉
(C.9)

γmin = (γtrunc)
α

dmax (C.10)

85

Using this, we get that:

N · hpaths = N +

dmax∑
n=1

β·dmax∑
k=n+1

2〈λ〉k · T (k + n, n)

(k + n+ 1)!
(C.11)

≤ N +

dmax∑
n=1

ηN (C.12)

= N + dmax · ηN (C.13)

= N(1 + dmax) (C.14)

= N(1 + η
logN

log 〈λ〉
) (C.15)

Moreover, this value for η may depend on the number of objectives and the average degree.

C.2 Square Cyclical Lattice

A SCL network structural shortest-paths are easily described by the Pascal’s triangle for each quadrant

(a SCL network has four distinct quadrants as seen in Figure C.2). From this, we get that for each

structural distance from the center node, the number of paths will grow exponentially (observe the pink

traced line in Figure C.2):

zk = 4 · 2k − 4 (C.16)

If the average number of paths for each node grew exponentially, then the algorithm complexity would

grow exponentially as well, which is not the case. Imposing that at each distance d, the number of optimal

paths h
(d)
path grows linearly with the distance (we will try to justify this in Section C.2.1), then the results

are the following:

f
(d)
paths(node) ' β · d (C.17)

zd =
∑
nodes

β · d = 4d · β · d ∼ d2 (C.18)

N · hpaths =

dmax∑
d=1

zd +

dmax∑
d=1

β·dmax∑
k=d+1

2zk ·
T (d, k + d+ 1)

(k + d+ 1)!
(C.19)

∼
dmax∑
d=1

d2 +

dmax∑
d=1

β·dmax∑
k=d+1

2zk ·
T (d, k + d+ 1)

(k + d+ 1)!
(C.20)

∼ d3
max +

dmax∑
d=1

ηd3
max (C.21)

= d3
max + ηd4

max (C.22)

=
√
N

3
+ η
√
N

4
(C.23)

= N(
√
N + ηN) (C.24)

86

Figure C.2: SCL network representation with quadrants and number of structural shortest-
paths for each node.

87

C.2.1 Number of Optimal Paths for SCL Network

In this section we present an argument for the linearity of the number of optimal paths growing lin-

early with the distance to the centre node, even though the number of structural shortest-paths grows

exponentially.

For each node at a distance n, the number of paths accepted will depend on the number of possible

shortest-paths there and the probability of them being eligible:

P
(

Pathin �D Pathjn

)
= P

(
Γn > Γn

)
· P
(
Pn < Pn

)
+ P

(
Γn < Γn

)
· P
(
Pn > Pn

)
(C.25)

= p1(1− p2) + (1− p1)p2 (C.26)

=
1

2
(C.27)

using that P
(

Γn > Γn
)

where both Γn are independent realisations of paths with dimension n. If the

paths have some intersection, i.e links of the network in common, the probability above calculated will

be the same since P
(

Γn > Γn
)

= 1/2,∀n. Moreover:

P
(

Pathin �D {Pathjn,Pathkn}
)

= P
(

Pathin �D Pathjn ∧ Pathin �D Pathkn

)
(C.28)

= P
(

Pathin �D Pathjn

)
· P
(

Pathin �D Pathkn

)
(C.29)

=
1

2
· 1

2
(C.30)

Using this, we verify that the probability of adding n paths to a set of m paths (see Figure C.3), all

with the same distance (equivalently parameters distributions) decreases exponentially with the number

of paths present and number of paths to add. Given the structure of the network (the Pascal’s triangle like

structure), the shortest-path length paths can always come from, at best, two previous nodes. Performing

the algorithm, when the nodes are visited the first time all the paths written and are non-dominated.

Then, when revisited by the other neighbour, it only adds the non-dominated ones and removes the

dominated, so throughout the algorithm, in this network, we are always dealing with merging two different

sets of paths. Let us first consider only the shortest ones.

Finding the set of non-dominated paths, all with the same distance, from two lists has some interesting

properties:

1. Every option has a probability of happening

2. The minimum number of paths is:

min #Xp(Paths
(i)
n ∪ Paths(j)

n) = min{#Xp(Paths
(i)
n) , #Xp(Paths

(j)
n)}

where Xp stands for the set of non-dominated paths and Paths
(i)
n stands for the list of paths indexed

by i at distance n. This minimum number comes from the fact that each of the sets is composed

by non-dominated paths.

88

3. The maximum number of paths is:

max #Xp(Paths
(i)
n ∪ Paths(j)

n) = #Xp(Paths
(i)
n) + #Xp(Paths

(j)
n)

where no paths dominate each. This as seen before is very unlikely, with the probability of happening

decreasing exponentially.

Figure C.3: Some of the possible choices of finding a the set of non-dominated paths from
two different lists of paths with the same distributions.

Because of this, the exponential growth of the number of structural shortest-paths is counterbalanced

by the exponential decrease in the probabilities, resulting in a linear growth in the number of optimal

paths with the distance from the center node.

89

	Acknowledgments
	Resumo
	Abstract
	List of Tables
	List of Figures
	List of Abbreviations
	1 Introduction
	1.1 Quantum Networks
	1.1.1 Entanglement

	1.2 State of the Art
	1.3 Objectives
	1.4 Thesis Structure

	2 Background
	2.1 Quantum Background
	2.1.1 Qubits
	2.1.2 Operations on Qubits
	2.1.3 Density Matrix
	2.1.4 Entanglement
	2.1.5 Quantum Operations
	2.1.6 Distributing Entanglement

	2.2 Networks and Graphs
	2.2.1 Erdös-Rényi Networks
	2.2.2 Square Cyclical Lattice Networks

	2.3 Routing Background
	2.3.1 Routing Algebra
	2.3.2 Algebras for Multi-Objective Routing
	2.3.3 Algorithms for Multi-Objective Routing

	2.4 End-of-Chapter Remarks

	3 Distribution Metrics for Quantum Networks
	3.1 Distributing Bipartite Entanglement
	3.1.1 Communication Time
	3.1.2 Memory Times
	3.1.3 Probability of Success
	3.1.4 Metric for Fidelity from Entanglement Swapping
	3.1.5 Metric for Quantum Memories Decoherence
	3.1.6 Metric for Probability of Success
	3.1.7 Overall Metrics for Bipartite Entanglement

	3.2 Distributing GHZ States
	3.2.1 Scheme for distribution
	3.2.2 Mixed States and Fidelity

	3.3 Distributing Arbitrary States
	3.3.1 Arbitrary n-Qubit State
	3.3.2 Scheme for Distribution
	3.3.3 Mixed States and Fidelity
	3.3.4 Probability of Success Metric for Distributing Arbitrary States

	3.4 End-of-Chapter Remarks

	4 Algorithms for Optimal Distribution of Multipartite Entanglement
	4.1 Algebra for Trees
	4.2 Steiner Tree Algorithm
	4.3 Star Algorithm
	4.4 Algorithms Comparison
	4.5 Simulations
	4.5.1 Scaling of the Network
	4.5.2 Simulations Results

	4.6 Complexity of Star-Algorithm
	4.7 End-of-Chapter Remarks

	5 Concluding remarks
	Bibliography
	A Calculations of Fidelity
	A.1 Distributing GHZ states using Star-Expansion Protocol
	A.2 Distributing GHZ states using Scheme for Distributing Arbitrary States

	B Monotonicity and Isotonicity Proofs
	B.1 Fidelity from Entanglement Swapping Metric
	B.2 Waiting time Metric
	B.3 Memory Decoherence Time Metric
	B.4 Probability of Success Metric
	B.5 Fidelity Metric for Distributing Arbitrary States

	C Complexity Calculations
	C.1 Erdös-Rényi
	C.2 Square Cyclical Lattice
	C.2.1 Number of Optimal Paths for SCL Network

